Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Weibin; Lesanovsky, Igor (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: Physics - Atomic Physics, Quantum Physics, Condensed Matter - Quantum Gases

Classified by OpenAIRE into

arxiv: Physics::Atomic Physics, Physics::Optics
Recent experiments have realized an all-optical photon transistor using a cold atomic gas. This approach relies on electromagnetically induced transparency (EIT) in conjunction with the strong interaction among atoms excited to high-lying Rydberg states. The transistor is gated via a so-called Rydberg spinwave, in which a single Rydberg excitation is coherently shared by the whole ensemble. In its absence the incoming photon passes through the atomic ensemble by virtue of EIT while in its presence the photon is scattered rendering the atomic gas opaque. An important current challenge is to preserve the coherence of the Rydberg spinwave during the operation of the transistor, which would enable for example its coherent optical read-out and its further processing in quantum circuits. With a combined field theoretical and quantum jump approach and by employing a simple model description we investigate systematically and comprehensively how the coherence of the Rydberg spinwave is affected by photon scattering. With large-scale numerical calculations we show how coherence becomes increasingly protected with growing interatomic interaction strength. For the strongly interacting limit we derive analytical expressions for the spinwave fidelity as a function of the optical depth and bandwidth of the incoming photon.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 4 (cT + z0) 8c Molecules, Vol. 1 (WORLD SCIENTIFIC, 2012) p. 301.
    • [2] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Ho erberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, Nature 488, 57 (2012).
    • [3] A. V. Gorshkov, R. Nath, and T. Pohl, Phys. Rev. Lett. 110, 153601 (2013).
    • [4] M. Sa man, T. G. Walker, and K. M lmer, Rev. Mod. Phys. 82, 2313 (2010).
    • [5] H. Weimer, R. Low, T. Pfau, and H. P. Buchler, Phys. Rev. Lett. 101, 250601 (2008).
    • [6] J. Stanojevic and R. Co^te, Phys. Rev. A 80, 033418 (2009).
    • [7] H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H. P. Buchler, Nat. Phys. 6, 382 (2010).
    • [8] T. Pohl, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 104, 043002 (2010).
    • [9] I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011).
    • [10] S. Ji, C. Ates, and I. Lesanovsky, Phys. Rev. Lett. 107, 060406 (2011).
    • [11] M. Garttner, K. P. Heeg, T. Gasenzer, and J. Evers, Phys. Rev. A 86, 033422 (2012).
    • [12] D. Petrosyan, M. Honing, and M. Fleischhauer, Phys. Rev. A 87, 053414 (2013).
    • [13] A. Hu, T. E. Lee, and C. W. Clark, Phys. Rev. A 88, 053627 (2013).
    • [14] E. Knill, R. La amme, and G. J. Milburn, Nature 409, 46 (2001).
    • [15] D. Paredes-Barato and C. S. Adams, Phys. Rev. Lett. 112, 040501 (2014).
    • [16] D. Petrosyan and M. Fleischhauer, Phys. Rev. Lett. 100, 170501 (2008).
    • [17] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Phys. Rev. Lett. 107, 133602 (2011).
    • [18] B. He, A. Sharypov, J. Sheng, C. Simon, and M. Xiao, Phys. Rev. Lett. 112, 133606 (2014).
    • [19] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, Nature 502, 71 (2013).
    • [20] S. Baur, D. Tiarks, G. Rempe, and S. Durr, Phys. Rev. Lett. 112, 073901 (2014).
    • [21] D. Tiarks, S. Baur, K. Schneider, S. Durr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).
    • [22] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Ho erberth, Phys. Rev. Lett. 113, 053601 (2014).
    • [23] D. A. B. Miller, Nat. Photon 4, 3 (2010).
    • [24] H. J. Caul eld and S. Dolev, Nat. Photon 4, 261 (2010).
    • [25] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, Nat. Photon 6, 605 (2012).
    • [26] Y. O. Dudin, F. Bariani, and A. Kuzmich, Phys. Rev. Lett. 109, 133602 (2012).
    • [27] D.-W. Wang and M. O. Scully, Phys. Rev. Lett. 113, 083601 (2014).
    • [28] D.-W. Wang, R.-B. Liu, S.-Y. Zhu, and M. O. Scully, Phys. Rev. Lett. 114, 043602 (2015).
    • [29] L. M. Duan, J. I. Cirac, and P. Zoller, Phys. Rev. A 66, 023818 (2002).
    • [30] D. Porras and J. Cirac, Phys. Rev. A 78, 053816 (2008).
    • [31] F. Bariani and T. A. B. Kennedy, Phys. Rev. A 85, 033811 (2012).
    • [32] Y. Miroshnychenko, U. V. Poulsen, and K. M lmer, Phys. Rev. A 87, 023821 (2013).
    • [33] W. Li, D. Viscor, S. Ho erberth, and I. Lesanovsky, Phys. Rev. Lett. 112, 243601 (2014).
    • [34] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65, 022314 (2002).
    • [35] Y. O. Dudin and A. Kuzmich, Science 336, 887 (2012).
    • [36] L. Li, Y. O. Dudin, and A. Kuzmich, Nature 498, 466 (2013).
    • [37] The physical meaning of the expectation values of the three operators, E^(z; t), P^(z; t) and S^(z; t) can be found in the supplementary information for Ref. [2].
    • [38] M. Plenio and P. Knight, Rev. Mod. Phys. 70, 101 (1998).
    • [39] A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. S rensen, Phys. Rev. A 76, 033805 (2007).
    • [40] Typically the pulse length c is thousands of meters, while the length of the atomic cloud is merely tens of micrometers. Due to the vacuum light speed c, the travelling time in the blockade region is hardly longer than 1 picosecond. This is far shorter than the time scale of the laser-atom interaction, which is in the order of microsecond. We use a Lax-Wendro algorithm to solve the coupled di erential equations. In order to have a good resolution in both time and space, we choose the spatial grid dz = 0:01L and restrict the time step with the condition dt < dz=c to ensure the numerical stability.
    • [41] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
    • [42] C. Gardiner and P. Zoller, Quantum Noise (Springer, 2004).
    • [43] See Appendix A.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • EC | RYSQ

Related to

  • fet-h2020FET PROACT: Quantum simulation
  • fet-h2020FET PROACT: Rydberg Quantum Simulators

Related to

  • fet-fp7FET Open: FET Young Explorers
  • fet-fp7FET Open: Quantum Integrated Light Matter Interface

Cite this article