Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wright, Daniel
Languages: English
Types: Doctoral thesis
Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.

Share - Bookmark

Cite this article