Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alsulami, A.; Griffin, J.; Alqurashi, R.; Yi, H.; Iraqi, A.; Lidzey, D.; Buckley, A. (2016)
Publisher: MDPI
Journal: Materials
Languages: English
Types: Article
Subjects: photoelectron spectroscopy, solution processing, vanadium oxide, organic photovoltaic, thermal stability, Article
Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 9. Arias, A.C.; Granstrom, M.; Thomas, D.S.; Petritsch, K.; Friend, R.H. Doped conducting-polymer -semiconducting-polymer interfaces: Their use in organic photovoltaic devices. Phys. Rev. B 1999, 60, 1854-1860. [CrossRef]
    • 10. Ko, C.J.; Lin, Y.K.; Chen, F.C.; Chu, C.W. Modified buffer layers for polymer photovoltaic devices. Appl. Phys. Lett. 2007, 90. [CrossRef]
    • 11. Lee, K.; Kim, J.Y.; Park, S.H.; Kim, S.H.; Cho, S.; Heeger, A.J. Air-stable polymer electronic devices. Adv. Mater. 2007, 19. [CrossRef]
    • 12. Norrman, K.; Madsen, M.V.; Gevorgyan, S.A.; Krebs, F.C. Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 2010, 132, 16883-16892. [CrossRef] [PubMed]
    • 13. Ratcliff, E.L.; Zacher, B.; Armstrong, N.R. Selective inter layers and contacts in organic photovoltaic cells. J. Phys. Chem. Lett. 2011, 2, 1337-1350. [CrossRef] [PubMed]
    • 14. De Jong, M.P.; van Ijzendoorn, L.J.; de Voigt, M.J.A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255-2257. [CrossRef]
    • 15. Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.W.; Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 2006, 88. [CrossRef]
    • 16. Park, J.H.; Lee, T.W.; Chin, B.D.; Wang, D.H.; Park, O.O. Roles of interlayers in efficient organic photovoltaic devices. Macromol. Rapid Commun. 2010, 31, 2095-2108. [CrossRef] [PubMed]
    • 17. Chen, S.; Manders, J.R.; Tsang, S.W.; So, F. Metal oxides for interface engineering in polymer solar cells. J. Mater. Chem. 2012, 22, 24202-24212. [CrossRef]
    • 18. Wang, H.Q.; Li, N.; Guldal, N.S.; Brabec, C.J. Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells. Org. Electron. 2012, 13, 3014-3021. [CrossRef]
    • 19. Chambers, B.A.; MacDonald, B.I.; Ionescu, M.; Deslandes, A.; Quinton, J.S.; Jasieniak, J.J.; Andersson, G.G. Examining the role of ultra-thin atomic layer deposited metal oxide barrier layers on cdte/ito interface stability during the fabrication of solution processed nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 2014, 125, 164-169. [CrossRef]
    • 20. Townsend, T.K.; Yoon, W.; Foos, E.E.; Tischler, J.G. Impact of nanocrystal spray deposition on inorganic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 7902-7909. [CrossRef] [PubMed]
    • 21. Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-solution-processed indium-free transparent composite electrodes based on Ag nanowire and metal oxide for thin- film solar cells. Adv. Funct. Mater. 2014, 24, 2462-2471. [CrossRef]
    • 22. Song, S.H.; Aydil, E.S.; Campbell, S.A. Metal-oxide broken-gap tunnel junction for copper indium gallium diselenide tandem solar cells. Sol. Energy Mater. Sol. Cells 2015, 133, 133-142. [CrossRef]
    • 23. Gwinner, M.C.; di Pietro, R.; Vaynzof, Y.; Greenberg, K.J.; Ho, P.K.H.; Friend, R.H.; Sirringhaus, H. Doping of organic semiconductors using molybdenum trioxide: A quantitative time-dependent electrical and spectroscopic study. Adv. Funct. Mater. 2011, 21, 1432-1441. [CrossRef]
    • 24. Zilberberg, K.; Trost, S.; Meyer, J.; Kahn, A.; Behrendt, A.; Luetzenkirchen-Hecht, D.; Frahm, R.; Riedl, T. Inverted organic solar cells with sol-gel processed high work-function vanadium oxide hole-extraction layers. Adv. Funct. Mater. 2011, 21, 4776-4783. [CrossRef]
    • 25. Zilberberg, K.; Trost, S.; Schmidt, H.; Riedl, T. Solution processed vanadium pentoxide as charge extraction layer for organic solar cells. Adv. Energy Mater. 2011, 1, 377-381. [CrossRef]
    • 26. Tan, Z.A.; Zhang, W.Q.; Cui, C.H.; Ding, Y.Q.; Qian, D.P.; Xu, Q.; Li, L.J.; Li, S.S.; Li, Y.F. Solution-processed vanadium oxide as a hole collection layer on an ito electrode for high-performance polymer solar cells. Phys. Chem. Chem. Phys. 2012, 14, 14589-14595. [CrossRef] [PubMed]
    • 27. Xie, F.X.; Choy, W.C.H.; Wang, C.D.; Li, X.C.; Zhang, S.Q.; Hou, J.H. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics. Adv. Mater. 2013, 25, 2051-2055. [CrossRef] [PubMed]
    • 28. Jin, S.; Jung, B.J.; Song, C.K.; Kwak, J. Room-temperature and solution-processed vanadium oxide buffer layer for efficient charge injection in bottom-contact organic field-effect transistors. Curr. Appl. Phys. 2014, 14, 1809-1812. [CrossRef]
    • 29. Oksuzoglu, R.M.; Bilgic, P.; Yildirim, M.; Deniz, O. Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films. Opt. Laser Technol. 2013, 48, 102-109. [CrossRef]
    • 30. Sahana, M.B.; Sudakar, C.; Thapa, C.; Lawes, G.; Naik, V.M.; Baird, R.J.; Auner, G.W.; Naik, R.; Padmanabhan, K.R. Electrochemical propertiesof V2O5 thin films deposited by spin coating. Mater. Sci. Eng. B 2007, 143, 42-50. [CrossRef]
    • 31. Haber, J.; Witko, M.; Tokarz, R. Vanadium pentoxide.1. Structures and properties. Appl. Catal. A Gen. 1997, 157, 3-22. [CrossRef]
    • 32. Watters, D.C.; Yi, H.; Pearson, A.J.; Kingsley, J.; Iraqi, A.; Lidzey, D. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells. Macromol. Rapid Commun. 2013, 34, 1157-1162. [CrossRef] [PubMed]
    • 33. Lu, L.; Xu, T.; Chen, W.; Landry, E.S.; Yui, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 2014, 8, 716-722. [CrossRef]
    • 34. Zilberberg, K.; Meyer, J.; Riedl, T. Solution processed metal-oxides for organic electronic devices. J. Mater. Chem. C 2013, 1, 4796-4815. [CrossRef]
    • 35. Wagenpfahl, A.; Rauh, D.; Binder, M.; Deibel, C.; Dyakonov, V. S-shaped current-voltage characteristics of organic solar devices. Phys. Rev. B 2010, 82, 115306. [CrossRef]
    • 36. Kim, J.; Kim, H.; Kim, G.; Back, H.; Lee, K. Soluble transition metal oxide/polymeric acid composites for efficient hole-transport layers in polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 951-957. [CrossRef] [PubMed]
    • 37. Talledo, A.; Granqvist, C.G. Electrochromic vanadium-pentoxide-based films-Structural, electrochemical, and optical-properties. J. Appl. Phys. 1995, 77, 4655-4666. [CrossRef]
    • 38. Bullot, J.; Cordier, P.; Gallais, O.; Gauthier, M.; Babonneau, F. Thin-layers deposited from V2O5 gels 2. An optical-absorption study. J. Non Cryst. Solids 1984, 68, 135-146. [CrossRef]
    • 39. Meyer, J.; Zilberberg, K.; Riedl, T.; Kahn, A. Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials. J. Appl. Phys. 2011, 110, 033710-033715. [CrossRef]
    • 40. Hancox, I.; Rochford, L.A.; Clare, D.; Walker, M.; Mudd, J.J.; Sullivan, P.; Schumann, S.; McConville, C.F.; Jones, T.S. Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells. J. Phys. Chem. C 2013, 117, 49-57. [CrossRef]
    • 41. Negreira, A.S.; Aboud, S.; Wilcox, J. Surface reactivity of V2O5(001): Effects of vacancies, protonation, hydroxylation, and chlorination. Phys. Rev. B 2011, 83. [CrossRef]
    • 42. Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; de Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167-175. [CrossRef]
    • 43. Sawatzky, G.A.; Post, D. X-ray photoelectron and auger-spectroscopy study of some vanadium-oxides. Phys. Rev. B 1979, 20, 1546-1555. [CrossRef]
    • 44. Demeter, M.; Neumann, M.; Reichelt, W. Mixed-valence vanadium oxides studied by XPS. Surf. Sci. 2000, 454-456, 41-44. [CrossRef]
    • 45. Coulston, G.W.; Thompson, E.A.; Herron, N. Characterization of vpo catalysts by X-ray photoelectron spectroscopy. J. Catal. 1996, 163, 122-129. [CrossRef]
    • 46. Suchorski, Y.; Rihko-Struckmann, L.; Klose, F.; Ye, Y.; Alandjiyska, M.; Sundmacher, K.; Weiss, H. Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Appl. Surf. Sci. 2005, 249, 231-237. [CrossRef]
    • 47. Hermann, K.; Witko, M.; Druzinic, R.; Tokarz, R. Hydrogen assisted oxygen desorption from the V2O5(010) surface. Top. Catal. 2000, 11, 67-75. [CrossRef]
    • 48. Toledano, D.S.; Henrich, V.E.; Metcalf, P. Surface reduction of Cr-V2O3 by Co. J. Vacuum Sci. Technol. A 2000, 18, 1906-1914. [CrossRef]
    • 49. Ganduglia-Pirovano, M.V.; Sauer, J. Stability of reduced V2O5(001) surfaces. Phys. Rev. B 2004, 70. [CrossRef]
    • 50. Yuan, N.Y.; Li, J.H.; Lin, C.L. Valence reduction process from sol-gel V2O5 to VO2 thin films. Appl. Surf. Sci. 2002, 191, 176-180.
    • 51. Surnev, S.; Ramsey, M.G.; Netzer, F.P. Vanadium oxide surface studies. Prog. Surf. Sci. 2003, 73, 117-165. [CrossRef]
    • 52. Bermudez, V.M.; Williams, R.T.; Long, J.P.; Reed, R.K.; Klein, P.H. Photoemission-study of hydrogen adsorption on vanadium dioxide near the semiconductor-metal phase-transition. Phys. Rev. B 1992, 45, 9266-9271. [CrossRef]
    • 53. Greiner, M.T.; Helander, M.G.; Tang, W.M.; Wang, Z.B.; Qiu, J.; Lu, Z.H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76-81. [CrossRef] [PubMed]
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article