LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Collin S VanBuren; Matthew Bonnan
Publisher: Public Library of Science (PLoS)
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Q, R, Research Article, Science, sub-04, Medicine

Classified by OpenAIRE into

mesheuropmc: animal structures
Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245.
    • 2. Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250: 1097-1103.
    • 3. Fischer MS, Krause C, Lilje KE (2010) Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology 113: 67-74.
    • 4. Shubin NH, Daeschler EB, Jenkins FA (2006) The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440: 764-771.
    • 5. Warren RD, Crompton RH (1997) Locomotor ecology of Lepilemur edwardsi and Avahi occidentalis. American Journal of Physical Anthropology 104: 471- 486.
    • 6. Higham TE, Davenport MS, Jayne BC (2001) Maneuvering in an arboreal habitat: the effects of turning angle on the locomotion of three sympatric ecomorphs of Anolis lizards. Journal of Experimental Biology 204: 4141-4155.
    • 7. Gatesy SM, Middleton KM (1997) Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology 17: 308-329.
    • 8. Middleton KM, Gatesy SM (2000) Theropod forelimb design and evolution. Zoological Journal of the Linnean Society 128: 149-187.
    • 9. Thorpe SKS, Holder RL, Crompton RH (2007) Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science 316: 1328-1331.
    • 10. Schmitt D (2003) Insights into the evolution of human bipedalism from experimental studies of humans and other primates. Journal of Experimental Biology 206: 1437-1448.
    • 11. Tallman M (2012) Morphology of the distal radius in extant hominoids and fossil hominins: Implications for the evolution of bipedalism. The Anatomical Record 295: 454-464.
    • 12. Maidment SCR, Linton DH, Upchurch P, Barrett PM (2012) Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs. PLoS ONE 7: e36904.
    • 13. Maidment SCR, Barrett PM (2012) Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs. Proceedings of the Royal Society B: Biological Sciences 279: 3765-3771.
    • 14. Maidment SCR, Barrett PM (In press) Osteological correlates for quadrupedality in ornithischian dinosaurs. Acta Palaeontologica Polonica.
    • 15. Nesbitt SJ, Sidor CA, Irmis RB, Angielczyk KD, Smith RMH, et al. (2010) Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464: 95-98.
    • 16. Fujiwara S, Hutchinson JR (2012) Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proceedings of the Royal Society B: Biological Sciences 279: 2561-2570.
    • 17. Bakker RT (1986) The dinosaur heresies: new theories unlocking the mystery of the dinosaurs and their extinction. New York: Kensington Publishing Corp. 481 p.
    • 18. Johnson RE, Ostrom JH (1995) The forelimb of Torosaurus and an analysis of the posture and gait of ceratopsian dinosaurs. In: Thomason J, editor. Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press. 205-218.
    • 19. Paul GS, Christiansen P (2000) Forelimb posture in neoceratopsian dinosaurs: implications for gait and locomotion. Paleobiology 26: 450-465.
    • 20. Dodson P, Farlow JO. The forelimb carriage of ceratopsid dinosaurs. In: Wolberg DL, Stump E, Rosenberg GD, editors; 1997; Academy of Natural Sciences, Philidephia. 393-398.
    • 21. Russell LS (1935) Musculature and functions in the Ceratopsia. Bulletin of the National Museum of Canada 77: 39-48.
    • 22. Thompson S, Holmes R (2007) Forelimb stance and step cycle in Chasmosaurus irvinensis (Dinosauria: Neoceratopsia). Palaeontologia Electronica 10: 17p.
    • 23. Fujiwara S (2009) A reevaluation of the manus structure in Triceratops (Ceratopsia: Ceratopsidae). Journal of Vertebrate Paleontology 29: 1136-1147.
    • 24. Bonnan MF, Senter P (2007) Were the basal sauropodomorph dinosaurs Plateosaurus and Massospondylus habitual quadrupeds? In: Barrett PM, Batten DJ, editors. Evolution and palaeobiology of early sauropodomorph dinosaurs: Special Papers in Palaeontology. 139-155.
    • 25. Bonnan MF, Yates AM (2007) A new description of the forelimb of the basal sauropodomorph Melanorosaurus: implications for the evolution of pronation, manus shape and quadrupedalism in sauropod dinosaurs. In: Barrett PM, Batten DJ, editors. Evolution and palaeobiology of early sauropodomorph dinosaurs: Special Papers in Palaeontology. 157-168.
    • 26. Bonnan MF (2007) Linear and geometric morphometric analysis of long bone scaling patterns in Jurassic Neosauropod dinosaurs: their functional and paleobiological implications. The Anatomical Record 290: 1089-1111.
    • 27. Bonnan MF (2003) The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. Journal of Vertebrate Paleontology 23: 595-613.
    • 28. Yates AM, Bonnan MF, Neveling J, Chinsamy A, Blackbeard MG (2010) A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism. Proceedings of the Royal Society B: Biological Sciences 277: 787-794.
    • 29. Reisz RR, Evans DC, Sues HD, Scott D (2010) Embryonic skeletal anatomy of the sauropodomorph dinosaur Massospondylus from the Lower Jurassic of South Africa. Journal of Vertebrate Paleontology 30: 1653-1665.
    • 30. Bonnan MF (2004) Morphometric analysis of humerus and femur shape in Morrison sauropods: implications for functional morphology and paleobiology. Paleobiology 30: 444-470.
    • 31. Molnar RE (1977) Analogies in the evolution of combat and display structures in ornithopods and ungulates. Evolutionary Theory 3: 165-190.
    • 32. Biewener AA (2005) Biomechanical consequences of scaling. Journal of Experimental Biology 208: 1665-1676.
    • 33. Senter P (2007) Analysis of forelimb function in basal ceratopsians. Journal of Zoology 273: 305-314.
    • 34. Bonnan MF, Sandrik JL, Nishiwaki T, Wilhite D, Elsey RM, et al. (2010) Calcified cartilage shape in archosaur long bones reflects overlying joint shape in stress-bearing elements: Implications for nonavian dinosaur locomotion. The Anatomical Record 293: 2044-2055.
    • 35. Holliday CM, Ridgely RC, Sedlmayr JC, Witmer LM (2010) Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs. PLoS ONE 5: e13120.
    • 36. Fujiwara S, Taru H, Suzuki D (2010) Shape of articular surface of crocodilian (Archosauria) elbow joints and its relevance to sauropsids. Journal of Morphology 271: 883-896.
    • 37. Fujiwara S, Kuwazuru O, Inuzuka N, Yoshikawa N (2009) Relationship between scapular position and structural strength of rib cage in quadruped animals. Journal of Mammalogy 270: 1084-1094.
    • 38. Alexander RM (1982) Locomotion of animals. New York: Blackie Glasgow. 163 p.
    • 39. MacLeod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science 293: 300-355.
    • 40. Hildebrand M, Goslow GE (2001) Analysis of vertebrate structure. New York: Wiley. 635 p.
    • 41. Flower WH (1885) An Introduction to the Osteology of the Mammalia. London: Macmillan.
    • 42. Peterson JA (1984) The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology 202: 1-42.
    • 43. Polly PD (2007) Limbs in mammalian evolution. In: Hall BK, editor. Fins into Limbs: Evolution, Development and Transformation. Chicago: University of Chicago Press. 245-268.
    • 44. Iwaniuk AN, Pellis SM, Whishaw IQ (1999) The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora). Canadian Journal of Zoology 77: 1064-1074.
    • 45. Andersson KI (2004) Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society 142: 91-104.
    • 46. Iwaniuk AN, Whishaw IQ (1999) How skilled are the skilled limb movements of the raccoon (Procyon lotor)? Behavioural brain research 99: 35-44.
    • 47. Figueirido B, Janis CM (2011) The predatory behaviour of the thylacine: Tasmanian tiger or marsupial wolf? Biology Letters 7: 937-940.
    • 48. Galton PM (1970) The posture of hadrosaurian dinosaurs. Journal of Paleontology 44: 464-473.
    • 49. Landsmeer JMF (1983) The mechanism of forearm rotation in Varanus exanthematicus. Journal of Morphology 175: 119-130.
    • 50. Meers MB (2003) Crocodylian forelimb musculature and its relevance to Archosauria. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 274: 891-916.
    • 51. Nishi S (1916) Zur vergleichenden Anatomie der eigentlichen (genuinen) Ru¨ckenmuskeln. Gegenbaurs Morphol Jb 50: 167-318.
    • 52. Senter P (2012) Forearm orientation in Hadrosauridae (Dinosauria: Ornithopoda) and implications for museum mounts. Paleontologica Electronica 15: 10p.
    • 53. Horner JR, Weishampel DB, Forster CA (2004) Hadrosauridae. In: Weishampel DB, Dodson P, Osmolska H, editors. The Dinosauria (2nd ed). 2nd Ed. ed. Berkeley, CA: University of California Press. 438-463.
    • 54. Dilkes DW (2001) An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae). Canadian Journal of Earth Sciences 38: 1205-1227.
    • 55. Brett-Surman MK, Wagner JR (2006) Discussion of character analysis of the appendicular anatomy in Campanian and Maastrichtian North American hadrosaurids-variation and ontogeny. In: Carpenter K, editor. Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs. Bloomington, Indiana: Indiana University Press. 135-169.
    • 56. Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology 143: 307-335.
    • 57. Abra`moff MD, Magalha˜es PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics international 11: 36-42.
    • 58. Siegel S, Castellan NJ (1988) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill Book Company.
    • 59. Rohlf FJ (2006) TPS software series. Department of Ecology and Evolution, State University of New York, Stony Brook.
    • 60. Sheets HD, Zelditch ML, Swiderski D (2004) IMP - Intergrate Morphometric Package. 7 ed. Buffalo, N.Y.: Published by the Authors.
    • 61. Perez SI, Bernal V, Gonzalez PN (2006) Differences between sliding semilandmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy 208: 769-784.
    • 62. Bookstein FL (1996) Landmark methods for forms without landmarks: localizing group differences in outline shape. Medical Image Analysis 1: 225- 243.
    • 63. Bookstein FL (1997) Morphometric tools for landmark data: geometry and biology. New York: Cambridge Univ Press.
    • 64. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40: 33-51.
    • 65. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology 39: 40-59.
    • 66. Slice DE (2001) Landmark coordinates aligned by Procrustes analysis do not lie in Kendall's shape space. Systematic Biology 50: 141-149.
    • 67. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification 16: 197-223.
    • 68. Gunz P, Mitteroecker P, Bookstein F (2005) Semilandmarks in three dimensions. In: Slice DE, editor. Modern morphometrics in physical anthropology. New York: Kluwer Academic/Plenum Publishing. 73-98.
    • 69. Rohlf FJ (1993) Relative warp analysis and an example of its application to mosquito wings. In: Marcus LF, Bello E, Garc´ıa-Valdascases A, editors. Contributions to morphometrics. Madrid: CSIC. 131-159.
    • 70. Campione NE, Evans DC (2011) Cranial growth and variation in Edmontosaurus (Dinosauria: Hadrosauridae): implications for Latest Cretaceous megaherbivore diversity in North America. PLoS ONE 6: e25186.
    • 71. R-Development-Core-Team (2010) R: A Language and Environment for Statistical Computing. 2.12.0 ed. Vienna, Austria: R Foundation for Statistical Computing.
    • 72. Webster M, Sheets HD (2010) A practical introduction to landmark-based geometric morphometrics. In: Alroy J, Hunt G, editors. Quantitative Methods in Paleobiology Paleontological Society Papers. 163-188.
    • 73. Blomberg SP, Garland Jr T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717-745.
    • 74. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
    • 75. Arnason U, Gullberg A, Janke A, Kullberg M (2007) Mitogenomic analyses of caniform relationships. Molecular Phylogenetics and Evolution 45: 863-874.
    • 76. Koepfli KP, Jenks SM, Eizirik E, Zahirpour T, Valkenburgh BV, et al. (2006) Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution 38: 603-620.
    • 77. Cione AL, Azpelicueta MM, Bond M, Carlini AA, Casciotta JR, et al. (2000) Miocene vertebrates from Entre R´ıos province, eastern Argentina. El Neo´geno de Argentina 14.
    • 78. Amer SAM, Kumazawa Y (2005) Mitochondrial genome of Pogona vitticepes (Reptilia; Agamidae): control region duplication and the origin of Australasian agamids. Gene 346: 249-256.
    • 79. Brown J, Rest J, Garc´ıa-Moreno J, Sorenson M, Mindell D (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology 6: 6.
    • 80. Brown JW, Payne RB, Mindell DP (2007) Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al. Biology Letters 3: 257-260.
    • 81. Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, et al. (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters 2: 543-547.
    • 82. Fabre P, Rodrigues A, Douzery EJP (2009) Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution 53: 808-825.
    • 83. Frostick LE, Reid I (1986) Evolution and sedimentary character of lake deltas fed by ephemeral rivers in the Turkana basin, northern Kenya. Geological Society, London, Special Publications 25: 113-125.
    • 84. Gonzalez J, Du¨ ttmann H, Wink M (2009) Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology 279: 310-318.
    • 85. Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, et al. (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311: 73-77.
    • 86. Marshall LG, Sempere T (1991) The Eocene to Pleistocene vertebrates of Bolivia and their stratigraphic context: a review. Fo´siles y facies de Bolivia 1: 631-652.
    • 87. Okajima Y, Kumazawa Y (2010) Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evolutionary Biology 10: 141.
    • 88. Pereira SL, Baker AJ (2006) A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Molecular Phylogenetics and Evolution 38: 499-509.
    • 89. Pyron RA (2010) A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Systematic Biology 59: 185- 194.
    • 90. Roos J, Aggarwal RK, Janke A (2007) Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary. Molecular Phylogenetics and Evolution 45: 663-673.
    • 91. Schulte II JA, Melville J, Larson A (2003) Molecular phylogenetic evidence for ancient divergence of lizard taxa on either side of Wallace's Line. Proceedings of the Royal Society of London Series B: Biological Sciences 270: 597-603.
    • 92. Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakeline body form in squamate reptiles. Evolution 60: 123-141.
    • 93. Zarza E, Reynoso VH, Emerson BC (2008) Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Molecular ecology 17: 3259-3275.
    • 94. Zrzavy J, Ricankova V (2004) Phylogeny of recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. Zoologica Scripta 33: 311-333.
    • 95. Fyler CA, Reeder TW, Berta A, Antonelis G, Aguilar A, et al. (2005) Historical biogeography and phylogeny of monachine seals (Pinnipedia: Phocidae) based on mitochondrial and nuclear DNA data. Journal of Biogeography 32: 1267- 1279.
    • 96. Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, et al. (2007) The delayed rise of present-day mammals. Nature 446: 507-512.
    • 97. Clemente CJ, Withers PC, Thompson G, Lloyd D (2011) Evolution of limb bone loading and body size in varanid lizards. The Journal of Experimental Biology 214: 3013-3020.
    • 98. English AWM (1977) Structural correlates of forelimb function in fur seals and sea lions. Journal of Morphology 151: 325-352.
    • 99. Sereno PC (2006) Shoulder girdle and forelimb in multituberculates: evolution of parasagittal forelimb posture in mammals. In: Carrano M, editor. Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles: a Volume Honoring James Allen Hopson. Chicago: University of Chicago Press. 315-366.
    • 100. Harvey KJ, Warburton N (2010) Forelimb musculature of kangaroos with particular emphasis on the tammar wallaby Macropus eugenii (Desmarest, 1817). Australian Mammalogy 32: 1-9.
    • 101. Bertram JEA, Biewener AA (1990) Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology 204: 157- 169.
    • 102. Beer FP, Johnston E (1981) Mechanics of Materials. New York: McGraw-Hill.
    • 103. Gatesy SM, Biewener AA (1991) Bipedal locomotion: effects of speed, size and limb posture in birds and humans. Journal of Zoology 224: 127-147.
    • 104. Benton MJ (2005) Vertebrate Palaeontology, 3rd ed. MaldenMA: Blackwell Publishing Company. 455 p.
    • 105. Senter P, Robins JH (2005) Range of motion in the forelimb of the theropod dinosaur Acrocanthosaurus atokensis, and implications for predatory behaviour. Journal of Zoology 266: 307-318.
    • 106. Carpenter K (2002) Forelimb biomechanics of nonavian theropod dinosaurs in predation. Palaeobiodiversity and Palaeoenvironments 82: 59-75.
    • 107. Middleton KM, Gatesy SM (2008) Theropod forelimb design and evolution. Zoological Journal of the Linnean Society 128: 149-187.
    • 108. Gambaryan PP, Kielan-Jaworowska Z (1997) Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontologica Polonica 42: 13-44.
    • 109. Parchman AJ, Reilly SM, Biknevicius AR (2003) Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal. Journal of Experimental Biology 206: 1379-1388.
    • 110. Reilly SM, Elias JA (1998) Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. Journal of Experimental Biology 201: 2559-2574.
    • 111. Carrano MT (1999) What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology 247: 29-42.
    • 112. Thewissen JGM, Hussain ST (2007) Postcranial Osteology of the most Primitive Artiodactyl: Diacodexis pakistanensis (Dichobunidae). Anatomia, Histologia, Embryologia 19: 37-48.
    • 113. Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zoological Journal of the Linnean Society 140: 487-521.
    • 114. Haines RW (1958) Arboreal or terrestrial ancestry of placental mammals. Quarterly Review of Biology 33: 1-23.
    • 115. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, et al. (2013) The Placental Mammal Ancestor and the Post-K-Pg Radiation of Placentals. Science 339: 662-667.
    • 116. Huxley TH (1880) Arboreal ancestry of the marsupials. Proceedings of the Zoological Society of London: 655-668.
    • 117. Matthew WD (1904) The arboreal ancestry of the Mammalia. The American Naturalist 38: 811-818.
    • 118. Rasmussen ME (1998) Notes on the morphology and the orientation of the forelimb of Ouranosaurus nigeriensis. Oryctos 1: 127-130.
    • 119. Wright JL (1999) Ichnological evidence for the use of the forelimb in iguanodontid locomotion. Special Papers in Palaeontology 60: 209-219.
    • 120. Lockley MG, Hunt AP (1999) Dinosaur tracks: And other fossil footprints of the western United States: Columbia University Press.
    • 121. Senter P (2010) Evidence for a sauropod-like metacarpal configuration in stegosaurian dinosaurs. Acta Palaeontologica Polonica 55: 427-432.
    • 122. Senter PJ (2010) Evidence for a sauropod-like metacarpal configuration in ankylosaurian dinosaurs. Acta Palaeontologica Polonica 55: 427-432.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article