LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Loukides, Grigorios; Liagouris, John; Gkoulalas-Divanis, Aris; Terrovitis, Manolis (2014)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Computer Science Applications, Health Informatics, QA75, QA76, RA
The dissemination of Electronic Health Record (EHR) data, beyond the originating healthcare institutions, can enable large-scale, low-cost medical studies that have the potential to improve public health. Thus, funding bodies, such as the National Institutes of Health (NIH) in the U.S., encourage or require the dissemination of EHR data, and a growing number of innovative medical investigations are being performed using such data. However, simply disseminating EHR data, after removing identifying information, may risk privacy, as patients can still be linked with their record, based on diagnosis codes. This paper proposes the first approach that prevents this type of data linkage using disassociation, an operation that transforms records by splitting them into carefully selected subsets. Our approach preserves privacy with significantly lower data utility loss than existing methods and does not require data owners to specify diagnosis codes that may lead to identity disclosure, as these methods do. Consequently, it can be employed when data need to be shared broadly and be used in studies, beyond the intended ones. Through extensive experiments using EHR data, we demonstrate that our method can construct data that are highly useful for supporting various types of clinical case count studies and general medical analysis tasks.

Share - Bookmark

Cite this article