LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schwadron, N. A.; Boyd, A. J.; Kozarev, K.; Golightly, M.; Spence, H.; Townsend, L. W.; Owens, Mathew (2010)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Astrophysics::Earth and Planetary Astrophysics
Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Badhwar, G. D., and P. M. O'Neill (1991), An improved model of galactic cosmic radiation for space exploration missions, Proc. Int. Conf. Cosmic Rays 22nd, 1, 643-646.
    • Badhwar, G. D., and P. M. O'Neill (1992), An improved model of galactic cosmic radiation for space exploration missions, Nucl. Tracks Radiat. Meas., 20, 403-410, doi:10.1016/1359-0189(92)90024-P.
    • Badhwar, G. D., and P. M. O'Neill (1993), Time lag of twenty‐two year solar modulation, Proc. Int. Conf. Cosmic Rays 23rd, 3, 535-539.
    • Badhwar, G. D., and P. M. O'Neill (1994), Long term modulation of galactic cosmic radiation and its model for space exploration, Adv. Space Res., 14, 749-757, doi:10.1016/0273-1177(94)90537-1.
    • Badhwar, G. D., and P. M. O'Neill (1996), Galactic cosmic radiation model and its applications, Adv. Space Res., 17, 7-17, doi:10.1016/ 0273-1177(95)00507-B.
    • Beer, J., et al. (1990), Use of 10Be in polar ice to trace the 11‐year cycle of solar activity, Nature, 347, 164-166, doi:10.1038/347164a0.
    • Cini Castagnoli, G., et al. (1995), Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP, Geophys. Res. Lett., 22, 707-710, doi:10.1029/95GL00298.
    • Cini Castagnoli, G., G. Bonino, C. Taricco, and B. Lehman (1998), Cosmogenic isotopes and geomagnetic signals in a Mediterranean sea sediment at 35,000 y BP, Nuovo Cimento C, 21, 243-246.
    • Cucinotta, F. A., F. K. Manuel, J. Jones, G. Izsard, J. Murray, B. Djojonegro, and M. Wear (2001a), Space radiation and cataracts in astronauts, Radiat. Res., 156, 460-466, doi:10.1667/0033-7587(2001) 156[0460:SRACIA]2.0.CO;2.
    • Cucinotta, F. A., W. Schimmerling, J. W. Wilson, L. E. Peterson, G. D. Badhwar, P. Saganti, and J. F. Dicello (2001b), Space radiation cancer risks and uncertainties for Mars missions, Radiat. Res., 156, 682-688, doi:10.1667/0033-7587(2001)156[0682:SRCRAU]2.0.CO;2.
    • Ferreira, S. E., and M. S. Potgieter (2004), Long‐term cosmic ray modulation in the heliosphere, Astrophys. J., 603, 744-752, doi:10.1086/ 381649.
    • Florinski, V., G. P. Zank, and N. V. Pogorelov (2003), Galactic cosmic ray transport in the global heliosphere, J. Geophys. Res., 108(A6), 1228, doi:10.1029/2002JA009695.
    • Forbush, S. E. (1954), World‐wide cosmic‐ray variations, 1937-1952, J. Geophys. Res., 59, 525-542, doi:10.1029/JZ059i004p00525.
    • Gleeson, L. J., and W. I. Axford (1968), Solar modulation of galactic cosmic rays, Astrophys. J., 154, 1011-1026, doi:10.1086/149822.
    • Heber, B., A. Kopp, J. Gieseler, R. Müller‐Mellin, H. Fichtner, K. Scherer, M. S. Potgieter, and S. E. S. Ferreira (2009), Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum, Astrophys. J., 699, 1956-1963, doi:10.1088/0004-637X/699/ 2/1956.
    • Hess, V. (1912), Über beobachtungen der durchdringenden strahlung bei seiben freiballonfahrten, Phys. Z., 13, 1084-1091.
    • Hess, V. (1913), Über den ursprung der durchdringenden strahlung, Phys. Z., 14, 610-617.
    • Jokipii, J. R., E. H. Levy, and W. B. Hubbard (1977), Effects of particle drift on cosmic‐ray transport. I: General properties, application to solar modulation, Astrophys. J., 213, 861-868, doi:10.1086/155218.
    • Masarik, J., and J. Beer (1999), Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere, J. Geophys. Res., 104, 12,099-12,111, doi:10.1029/1998JD200091.
    • McComas, D. J., et al. (2009), Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX), Science, 326, 959-962, doi:10.1126/science.1180906.
    • McHargue, L. R., P. E. Damon, and D. J. Donahue (1995), Enhanced cosmic‐ray production of 10Be coincident with Mono Lake and Laschamp geomagnetic excursions, Geophys. Res. Lett., 22, 659- 662, doi:10.1029/95GL00169.
    • McHargue, L. R., D. J. Donahue, P. E. Damon, C. P. Sonett, D. Biddulph, and G. Burr (2000), Geomagnetic modulation of the late Pleistocene cosmic‐ray flux as determined by 10Be from Blake Outer Ridge marine sediments, Nucl. Instrum. Methods Phys. Res., Sect. B, 172, 555-561, doi:10.1016/S0168-583X(00)00092-6.
    • Millikan, R. A., and I. S. Bowen (1926), High frequency rays of cosmic origin I. Sounding balloon observations at extreme altitudes, Phys. Rev., 27(4), 353-361, doi:10.1103/PhysRev.27.353.
    • NASA Technical Standard (2007), NASA Space Flight Human System Standard, vol. 1, Crew Health, NASA‐STD‐3001, NASA, Washington, D. C.
    • O'Neill, P. M. (2006), Badhwar‐O'Neill galactic cosmic ray model update based on Advanced Composition Explorer (ACE) energy spectra from 1997 to present, Adv. Space Res., 37, 1727-1733, doi:10.1016/j.asr.2005.02.001.
    • Owens, M. J., N. A. Schwadron, N. U. Crooker, W. J. Hughes, and H. E. Spence (2007), Role of coronal mass ejections in the heliospheric Hale cycle, Geophys. Res. Lett., 34, L06104, doi:10.1029/ 2006GL028795.
    • Owens, M. J., C. N. Arge, N. U. Crooker, N. A. Schwadron, and T. S. Horbury (2008), Estimating total heliospheric magnetic flux from single‐point in situ measurements, J. Geophys. Res., 113, A12103, doi:10.1029/2008JA013677.
    • Parker, E. N. (1965), Passage of energetic particles through interplanetary space, Planet. Space Sci., 13, 9-49, doi:10.1016/0032-0633(65) 90131-5.
    • Potgieter, M. S., and J. A. le Roux (1992), The simulated features of heliospheric cosmic‐ray modulation with a time‐dependent drift model. I-General effects of the changing neutral sheet over the period 1985-1990, Astrophys. J., 386, 336-346, doi:10.1086/171020.
    • Raisbeck, G. M., F. Yiou, D. Bourles, C. Lorius, J. Jouzel, and N. I. Barkov (1987), Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period, Nature, 326, 273-277, doi:10.1038/326273a0.
    • Richardson, J. D., J. C. Kasper, C. Wang, J. W. Belcher, and A. J. Lazarus (2008), Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock, Nature, 454, 63-66, doi:10.1038/nature07024.
    • Saganti, P. B., F. A. Cucinotta, J. W. Wilson, T. F. Cleghorn, and C. J. Zeitlin (2006), Model calculations of the particle spectrum of the galactic cosmic ray (GCR) environment: Assessment with ACE/ CRIS and MARIE measurements, Radiat. Meas., 41, 1152-1157, doi:10.1016/j.radmeas.2005.12.008.
    • Scherer, K., H. Fichtner, and O. Stawicki (2002), Shielded by the wind: The influence of the interstellar medium on the environment of the Earth, J. Atmos. Sol. Terr. Phys., 64, 795-804, doi:10.1016/S1364-6826 (02)00078-0.
    • Schwadron, N. A., M. Owens, and N. U. Crooker (2008), The heliospheric magnetic field over the Hale cycle, Astrophys. Space Sci. Trans., 4, 19-26.
    • Space Science Board (1973), HZE‐Particle Effects in Manned Space Flight, Natl. Acad. of Sci., Washington, D. C.
    • Space Studies Board (1996), Radiation Hazards to Crews on Interplanetary Missions, Natl. Acad. of Sci., Washington, D. C.
    • Stone, E. C., A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber (2005), Voyager 1 explores the termination shock region and the heliosheath beyond, Science, 309, 2017-2020, doi:10.1126/science.1117684.
    • Townsend, L. W., Y. M. Charara, N. Delauder, M. PourArsalan, J. A. Anderson, C. M. Fisher, H. E. Spence, N. A. Schwadron, M. J. Golightly, and F. A. Cucinotta (2010), Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during t h e LR O m i s s i o n, S p a c e W e a t h e r , 8 , S 0 0 E 0 3 , d o i :1 0 . 1 02 9 / 2009SW000526.
    • Urch, I. H., and L. J. Gleeson (1972), Galactic cosmic ray modulation from 1965 to 1970, Astrophys. Space Sci., 17, 426-446.
    • Wagner, G., J. Masarik, J. Beer, S. Baumgartner, D. Imboden, P. W. Kubik, H.‐A. Synal, and M. Suter (2000), Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core, Nucl. Instrum. Methods Phys. Res., Sect. B, 172, 597-604, doi:10.1016/S0168-583X(00)00285-8.
    • Wilson, J. W., L. W. Townsend, W. S. Schimmerling, G. S. Khandelwal, F. S. Khan, J. E. Nealy, F. A. Cucinotta, L. C. Simonsen, J. L. Shinn, and J. W. Norbury (1991), Transport methods and interactions for space radiations, NASA Tech. Rep., NASA‐RP‐1257, 615 pp.
    • Zank, G. P., and P. C. Frisch (1999), Consequences of a change in the galactic environment of the Sun, Astrophys. J., 518, 965-973, doi:10.1086/307320.
    • A. J. Boyd, K. Kozarev, and N. A. Schwadron, Department of Astronomy, Boston University, Boston, MA 02215, USA. (nathanas@ bu.edu) M. Golightly and H. Spence, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA.
    • M. Owens, Space Environment Physics Group, Department of Meteorology, University of Reading, Reading RG6 6BB, UK. L. W. Townsend, Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article