LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yin, D. D.; Wang, Q. D.; Boehlert, C. J.; Janik, Vit (2012)
Publisher: Springer New York LLC
Languages: English
Types: Article
Subjects: TN
The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] B. L. Mordike and K. U. Kainer, Magnesium Alloys and Their Applications, Wiley, New York, 2000, p. 816.
    • [2] A. Luo and M. O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259-5271.
    • [3] B. L. Mordike and T. Ebert: Mat. Sci. Eng. A, 2001, vol. 302, pp. 37-45.
    • [4] A. A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13-30.
    • [5] S. Zhu, J. Nie and B. Mordike: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1221-1229.
    • [6] B. L. Mordike: Mat. Sci. Eng. A, 2002, vol. 324, pp. 103-112.
    • [7] M. Pekguleryuz and M. Celikin: Int. Mater. Rev., 2010, vol. 55, pp. 197-217.
    • [8] Y. Gao, Q. D. Wang, J. H. Gu, Y. Zhao, Y. Tong and D. D. Yin: J. Alloy. Compd, 2009, vol. 477, pp. 374-378.
    • [9] D. D. Yin, Q. D. Wang, Y. Gao, C. J. Chen and J. Zheng: J. Alloy. Compd, 2011, vol. 509, pp. 1696-1704.
    • [10] K. Okamoto, M. Sasaki, N. Takahashi, Q. D. Wang, Y. Gao, D. D. Yin and C. J. Chen, Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons, in: Magnesium Technology 2011, 2011.
    • [11] C. J. Chen, Q. D. Wang and D. D. Yin: J. Alloy. Compd, 2009, vol. 487, pp. 560-563.
    • [12] C. J. Boehlert, C. J. Cowen, S. Tamirisakandala, D. J. Mceldowney and D. B. Miracle: Scripta Mater., 2006, vol. 55, pp. 465-468.
    • [13] J. P. Quast and C. J. Boehlert: Metall. Mater. Trans. A, 2007, vol. 38, pp. 529-536.
    • [14] B. Wilshire and H. Burt: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 47-54.
    • [15] B. F. Dyson and T. B. Gibbons: Acta Mater., 1987, vol. 35, pp. 2355-2369.
    • [16] W. Blum, Y. Li, X. Zeng, P. Zhang, B. von Großmann and C. Haberling: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1721-1728.
    • [17] J. F. King, Development of Practical High Temperature Magnesium Casting Alloys, in: Magnesium Alloys and Their Applications, Wiley, New York, 2000, pp. 14-22.
    • [18] B. Mordike, I. Stulíková and B. Smola: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1729-1736.
    • [19] D. C. Dunand, B. Q. Han and A. M. Jansen: Metall. Mater. Trans. A, 1999, vol. 30, pp. 829-838.
    • [20] D. P. Miannay, Time-dependent fracture mechanics, Springer, New York, 2001, p. 313.
    • [21] G. Sundararajan: Mat. Sci. Eng. A, 1989, vol. 112, pp. 205-214.
    • [22] F. Povolo: J. Mater. Sci., 1985, vol. 20, pp. 2005-2010.
    • [23] F. C. Monkman and N. J. Grant: Proc. ASTM., 1956, vol. 56, pp. 593-620.
    • [24] F. Dobes and K. Milicka: Met. Sci., 1976, vol. 10, pp. 382-384.
    • [25] J. F. Nie and B. Muddle: Acta Mater., 2000, vol. 48, pp. 1691-1703.
    • [26] T. Honma, T. Ohkubo, S. Kamado and K. Hono: Acta Mater., 2007, vol. 55, pp. 4137-4150.
    • [27] S. M. He, X. Q. Zeng, L. M. Peng, X. Gao, J. F. Nie and W. J. Ding: J. Alloy. Compd, 2006, vol. 421, pp. 309-313.
    • [28] M. Barnett: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1799-1806.
    • [29] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055-2065.
    • [30] Z. Keshavarz and M. R. Barnett: Scripta Mater., 2006, vol. 55, pp. 915-918.
    • [31] M. E. Kassner and M. T. Perez-Prado: Prog. Mater. Sci., 2000, vol. 45, pp. 1-102.
    • [32] G. E. Dieter, Mechanical metallurgy, McGraw-Hill, New York, 1986, p. 751.
    • [33] B. F. Dyson and M. McLean: Acta Mater., 1983, vol. 31, pp. 17-27.
    • [34] K. R. Williams and B. Wilshire: Mat. Sci. Eng., 1977, vol. 28, pp. 289-296.
    • [35] P. Zhang, B. Watzinger and W. Blum: phys. stat. sol. (a), 1999, vol. 175, pp. 481-489.
    • [36] R. A. Stevens and P. E. J. Flewitt: Acta Mater., 1981, vol. 29, pp. 867-882.
    • [37] S. S. Vagarali and T. G. Langdon: Acta Mater., 1981, vol. 29, pp. 1969-1982.
    • [38] S. S. Vagarali and T. G. Langdon: Acta Mater., 1982, vol. 30, pp. 1157-1170.
    • [39] R. B. Jones and J. E. Harris: ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 1964-1970 (vols 178-184), Various titles labelled Volumes A to S, 1963, vol. 178, pp. 1-8.
    • [40] M. Regev, E. Aghion, S. Berger, M. Bamberger and A. Rosen: Mat. Sci. Eng. A, 1998, vol. 257, pp. 349-352.
    • [41] P. Zhao, Q. Wang, C. Zhai and Y. Zhu: Mat. Sci. Eng. A, 2007, vol. 444, pp. 318-326.
    • [42] Z. Chen, J. Huang, R. F. Decker, S. E. Lebeau, L. R. Walker, O. B. Cavin, T. R. Watkins and C. J. Boehlert: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1386-1399.
    • [43] C. J. Boehlert and K. Knittel: Mat. Sci. Eng. A, 2006, vol. 417, pp. 315-321.
    • [44] C. J. Boehlert: J. Mater. Sci., 2007, vol. 42, pp. 3675-3684.
    • [45] J. Zheng, Q. D. Wang, Z. L. Jin and T. Peng: Mat. Sci. Eng. A, 2010, vol. 527, pp. 4605-4612.
    • [46] J. Zheng, Q. D. Wang, Z. L. Jin and T. Peng: Mat. Sci. Eng. A, 2010, vol. 527, pp. 1677-1685.
    • [47] J. Zheng, Q. D. Wang, Z. L. Jin and T. Peng: J. Alloy. Compd, 2010, vol. 496, pp. 351-356.
    • [48] Q. D. Wang, D. Q. Li, J. J. Blandin and M. Suery: Mat. Sci. Eng. A, 2009, vol. 516, pp. 189-192.
    • [49] J. G. Wang, L. M. Hsiung, T. G. Nieh and M. Mabuchi: Mat. Sci. Eng. A, 2001, vol. 315, pp. 81-88.
    • [50] M. F. Ashby and H. J. Frost, Deformation-mechanism maps :the plasticity and creep of metals and ceramics, Pergamon Press, Oxford, 1982, p. 166.
    • [51] M. Suzuki, H. Sato, K. Maruyama and H. Oikawa: Mat. Sci. Eng. A, 2001, vol. 319-321, pp. 751-755.
    • [52] J. Cadek, Creep in Metallic Materials, Amsterdam, 1988.
    • [53] A. M. Jansen and D. C. Dunand: Acta Mater., 1997, vol. 45, pp. 4583-4592.
    • [54] D. C. Dunand and A. M. Jansen: Acta Mater., 1997, vol. 45, pp. 4569-4581.
    • [55] M. F. Ashby and B. F. Dyson, Creep damage mechanics and micromechanisms, in: R. S. Valluri (Ed. Advances in fracture research, vol 1, Pergamon Press, Oxford and New York, 1984, pp. 3-30.
    • [56] E. Aghion, B. Bronfin, F. Von Buch, S. Schumann and H. Friedrich: JOM, 2003, vol. 55, pp. A30-A33.
    • [57] F. Hnilica, V. Janik, B. Smola, I. Stulikova and V. Ocenasek: Mat. Sci. Eng. A, 2008, vol. 489, pp. 93-98.
    • [58] M. E. Kassner and T. A. Hayes: Int. J. Plasticity, 2003, vol. 19, pp. 1715-1748.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article