Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan (2016)
Publisher: European Geosciences Union
Journal: SOIL
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg−1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g−1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography–mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • An, C., Huang, G., Yu, H., Wei, J., Chen, W., and Li, G.: Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system, Chemosphere, 81, 1423-1429, doi:10.1016/j.chemosphere.2010.09.012, 2010.
    • An, C., Huang, G., Wei, J., and Yu, H.: Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment, Water Res., 45, 5501-5510, doi:10.1016/j.watres.2011.08.011, 2011.
    • Anderson, M. J.: A new method for non-parametric multivariate analysis of variance, Aust. Ecol., 26, 32-46, 2001.
    • Anderson, M. J. and Willis, T. J.: Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology, Ecology, 84, 511-525, 2003.
    • Anderson, T. A., Guthrie, E. A., and Walton, B. T.: Bioremediation, Environ. Sci. Technol., 27, 2630-2636, 1993.
    • Banning, N. C., Lalor, B. M., Cookson, W. R., Grigg, A. H., and Murphy, D. V.: Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: Which substrates discriminate?, Appl. Soil Ecol., 56, 27-34, doi:10.1016/j.apsoil.2012.01.009, 2012.
    • Baptista, S. J., Cammarota, M. C., Dias, D., and Freire, D. C.: Production of CO2 in crude oil bioremediation in clay soil, Brazil. Arch. Biol. Technol., 48, 249-255, 2005.
    • Bastow, T. P., van Aarssen, B. G. K., and Lang, D.: Rapid small-scale separation of saturate, aromatic and polar components in petroleum, Org. Geochem., 38, 1235-1250, doi:10.1016/j.orggeochem.2007.03.004, 2007.
    • Bento, F. M., Camargo, F. A. O., Okeke, B. C., and Frankenberger, W. T.: Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation, Bioresour. Technol., 96, 1049-1055, doi:10.1016/j.biortech.2004.09.008, 2005.
    • Blair, G. J., Chinoim, N., Lefroy, R. D. B., Anderson, G. C., and Crocker, G. J.: A soil sulfur test for pastures and crops, Soil Res., 29, 619-626, 1991.
    • Boopathy, R.: Anaerobic biodegradation of no. 2 diesel fuel in soil: A soil column study, Bioresour. Technol., 94, 143-151, doi:10.1016/j.biortech.2003.12.006, 2004.
    • Campbell, C. D., Grayston, S. J., and Hirst, D. J.: Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities, J. Microbiol. Meth., 30, 33-41, 1997.
    • Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S., and Potts, J. M.: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil, Appl. Environ. Microbiol., 69, 3593- 3599, doi:10.1128/AEM.69.6.3593.3599.2003, 2003.
    • Clegg, M. D., Sullivan, C. Y., and Eastin, J. D.: A sensitive technique for the rapid measurement of carbon dioxide concentrations, Plant Physiol., 62, 924-926, 1978.
    • Colwell, J. D.: The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis, Aust. J. Exp. Agric. Anim. Husb., 3, 190-197, 1963.
    • Degens, B. P. and Harris, J. A: Development of a physiological approach to measuring the catabolic diversity of soil microbial communities, Soil Biol. Biochem., 29, 1309-1320, doi:10.1016/S0038-0717(97)00076-X, 1997.
    • Dibble, J. T. and Bartha, R.: Effect of environmental parameters on the biodegradation of oil sludge, Appl. Environ. Microbiol., 37, 729-739, 1979.
    • Dinkelaker, B., Römheld, V., and Marschner, H.: Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.), Plant Cell Environ., 12, 285-292, doi:10.1111/j.1365-3040.1989.tb01942.x, 1989.
    • Evans, A.: Biodegradation of 14C-labeled low molecular organic acids using three biometer methods, J. Geochemical Explor., 65, 17-25, doi:10.1016/S0375-6742(98)00058-2, 1998.
    • Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil bacterial communities, P. Natl. Acad. Sci. USA, 103, 626- 631, doi:10.1073/pnas.0507535103, 2006.
    • Fujii, K., Hayakawa, C., van Hees, P. A. W., Funakawa, S. and Kosaki, T.: Biodegradation of low molecular weight organic compounds and their contribution to heterotrophic soil respiration in three Japanese forest soils, Plant Soil, 334, 475-489, doi:10.1007/s11104-010-0398-y, 2010.
    • Fujii, K., Aoki, M., and Kitayama, K.: Biodegradation of low molecular weight organic acids in rhizosphere soils from a tropical montane rain forest, Soil Biol. Biochem., 47, 142-148, doi:10.1016/j.soilbio.2011.12.018, 2012.
    • Gao, Y., Ren, L., Ling, W., Kang, F., Zhu, X., and Sun, B.: Effects of low-molecular-weight organic acids on sorption-desorption of phenanthrene in soils, Soil Sci. Soc. Am. J., 74, 51-59, doi:10.2136/sssaj2009.0105, 2010.
    • Gao, Y., Yang, Y., Ling, W., Kong, H., and Zhu, X.: Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil, Soil Sci. Soc. Am. J., 75, 1694-1703, doi:10.2136/sssaj2010.0244, 2011.
    • Greenwood, P. F., Wibrow, S., George, S. J. and Tibbett, M.: Sequential hydrocarbon biodegradation in a soil from arid coastal Australia, treated with oil under laboratory controlled conditions, Org. Geochem., 39, 1336-1346, doi:10.1016/j.orggeochem.2008.05.005, 2008.
    • Greenwood, P. F., Wibrow, S., George, S. J., and Tibbett, M.: Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure, Org. Geochem., 40, 293-300, doi:10.1016/j.orggeochem.2008.12.009, 2009.
    • Grierson, P. F.: Organic acids in the rhizosphere of Banksia integrifolia L.f., Plant Soil, 144, 259-265, doi:10.1007/BF00012883, 1992.
    • Gurska, K., Wang, W., Gerhardt, K., Khalid, A., Isherwood, D., Huang, X., Glick, B. and Greenberg, B.: Three year field test of a plant growth promoting rhizobacteria enhanded phytoremediation system at a land farm for treatment of hydrocarbon waste, Environ. Sci. Technol., 43, 4472-4479, 2009.
    • Hashimoto, Y.: Citrate sorption and biodegradation in acid soils with implications for aluminum rhizotoxicity, Appl. Geochem., 22, 2861-2871, doi:10.1016/j.apgeochem.2007.07.006, 2007.
    • Hinsinger, P., Plassard, C., Tang, C. and Jaillard, B.: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review, Plant Soil, 248, 43-59, doi:10.1023/A:1022371130939, 2003.
    • Ikuma, H. and Bonner, W. D.: Properties of higher plant mitochondria. III. Effects of respiratory inhibitors, Plant Physiol., 42, 1535-1544, doi:10.1104/pp.42.11.1535, 1967.
    • Joner, E. J. and Leyval, C.: Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza, Environ. Sci. Technol., 37, 2371-2375, doi:10.1021/es020196y, 2003.
    • Jones, D. L.: Organic acids in the rhizospere - a critical review, Plant Soil, 205, 25-44, 1998.
    • Jones, D. L. and Darrah, P. R.: Role of root derived organic acids in the mobilization of nutrients from the rhizosphere, Plant Soil, 166, 247-257, doi:10.1007/BF00008338, 1994.
    • Jones, D. L. and Darrah, P. R.: Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow, Plant Soil, 173, 103-109, doi:10.1007/BF00155523, 1995.
    • Jones, D. L., Prabowo, A. M., and Kochian, L. V: Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: The effect of microorganisms on root exudation of malate under Al stress, Plant Soil, 182, 239-247, 1996.
    • Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by root exudates, Nat. Clim. Change, 5, 588-595, doi:10.1038/nclimate2580, 2015.
    • Kidd, D. R., Ryan, M. H., Haling, R. E., Lambers, H., Sandral, G. A., Yang, Z., Culvenor, R. A., Cawthray, G. R., Stefanski, A. and Simpson, R. J.: Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses, Plant Soil, 402, 77-89, doi:10.1007/s11104-015-2770-4, 2016.
    • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V and Lugtenberg, B. J. J.: Rhizoremediation: A beneficial plant-microbe interaction bioremediation?: A natural method, Mol. Plant. Microb. Interact., 17, 6-15, 2004.
    • Lauber, C. L., Hamady, M., Knight, R., Fierer, N.: Pryosequencing based assessment of soil pH as a predictor of soil bacterial communitu structure at the continental scale, Appl. Environ. Microbiol., 75, 5111-5120, 2009.
    • Li, J. and Copeland, L.: Role of malonate in chickpeas, Phytochemistry, 54, 585-589, doi:10.1016/S0031-9422(00)00162-X, 2000.
    • Ling, W., Ren, L., Gao, Y., Zhu, X., and Sun, B.: Impact of lowmolecular-weight organic acids on the availability of phenanthrene and pyrene in soil, Soil Biol. Biochem., 41, 2187-2195, doi:10.1016/j.soilbio.2009.08.003, 2009.
    • Ma, B., He, Y., Chen, H. H., Xu, J. M., and Rengel, Z.: Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis, Environ. Pollut., 158, 855-861, doi:10.1016/j.envpol.2009.09.024, 2010.
    • Martin, B. C., George, S. J., Price, C. A., Ryan, M. H., and Tibbett, M.: The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions, Sci. Total Environ., 472, 642-653, doi:10.1016/j.scitotenv.2013.11.050, 2014.
    • Miya, R. K. and Firestone, M. K.: Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris, J. Environ. Qual., 30, 1911-1918, doi:10.2134/jeq2001.1911, 2001.
    • Neumann, G. and Römheld, V.: Root excretion of carboxylic acids and protons in phosphorus-deficient plants, Plant Soil, 211, 121- 130, doi:10.1023/A:1004380832118, 1999.
    • Nie, M., Wang, Y., Yu, J., Xiao, M., Jiang, L., Yang, J., Fang, C., Chen, J., and Li, B.: Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil, PLoS One, 6, 1-8, doi:10.1371/journal.pone.0017961, 2011.
    • Oburger, E., Kirk, G. J. D., Wenzel, W. W., Puschenreiter, M., and Jones, D. L.: Interactive effects of organic acids in the rhizosphere, Soil Biol. Biochem., 41, 449-457, doi:10.1016/j.soilbio.2008.10.034, 2009.
    • Pang, J., Ryan, M. H., Tibbett, M., Cawthray, G. R., Siddique, K. H. M., Bolland, M. D. A., Denton, M. D. and Lambers, H.: Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply, Plant Soil, 331, 241-255, doi:10.1007/s11104-009-0249-x, 2010.
    • Park, I. S. and Park, J. W.: Determination of a risk management primer at petroleum-contaminated sites: Developing new human health risk assessment strategy, J. Hazard Mater., 185, 1374- 1380, doi:10.1016/j.jhazmat.2010.10.058, 2011.
    • Pearse, S. J., Veneklaas, E. J., Cawthray, G. R., Bolland, M. D. A. and Lambers, H.: Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status, Plant Soil, 288, 127-139, doi:10.1007/s11104-006-9099-y, 2006.
    • Phillips, L. A., Greer, C. W., Farrell, R. E., and Germida, J. J.: Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil, Appl. Soil Ecol., 52, 56-64, doi:10.1016/j.apsoil.2011.10.009, 2012.
    • Ramadass, K., Megharaj, M., and Venkateswarlu, K.: Ecological implications of motor oil pollution: Earthworm survival and soil health, Soil Biol. Biochem., 85, 72-81, doi:10.1016/j.soilbio.2015.02.026, 2015.
    • Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C. Caporasp, J. G., Knight, R., and Fierer, N.: Soil bacterial and fungal communities across a pH gradient in an arable soil, ISME J., 4, 1340-1351, 2010.
    • Rukshana, F., Butterly, C. R., Baldock, J. A., Xu, J. M. and Tang, C.: Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralisation, Soil Biol. Biochem., 51, 35-43, doi:10.1016/j.soilbio.2012.03.022, 2012.
    • Ryan, M.: Bioremediation of petroleum hydrocarbon spills - data from Martin et al. SOIL paper 2016, The University of Western Australia, doi:10.4225/23/57dfa129cef09, 2016.
    • Ryan, M. H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L. D. B., Lambers, H., Cawthray, G. R., and Pang, J.: Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition, Plant Cell Environ., 35, 2170-2180, doi:10.1111/j.1365-3040.2012.02547.x, 2012.
    • Ryan, P. R., Delhaize, E., and Jones, D. L.: Function and mechanism of organic anion exudation from plant roots, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 527-560, 2001.
    • Searle, P. L.: The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review, Analyst, 109, 549- 568, 1984.
    • Seklemova, E., Pavlova, A., and Kovacheva, K.: Biostimulationbased bioremediation of diesel fuel: Field demonstration, Biodegradation, 12, 311-316, doi:10.1023/A:1014356223118, 2001.
    • Shahsavari, E., Adetutu, E. M., Taha, M., and Ball, A. S.: Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat, J. Environ. Manage., 155, 171-176, doi:10.1016/j.jenvman.2015.03.027, 2015.
    • Shane, M. W. and Lambers, H.: Cluster roots: A curiosity in context, Plant Soil, 274, 101-125, doi:10.1007/s11104-004-2725-7, 2005.
    • Simons, K. L., Ansar, A., Kadali, K., Bueti, A., Adetutu, E. M. and Ball, A. S.: Investigating the effectiveness of economically sustainable carrier material complexes for marine oil remediation, Bioresour. Technol., 126, 202-207, doi:10.1016/j.biortech.2012.09.053, 2012.
    • Strobel, B. W.: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution - a review, Geoderma, 99, 169- 198, doi:10.1016/S0016-7061(00)00102-6, 2001.
    • Ström, L., Owen, A. G., Godbold, D. L., and Jones, D. L.: Organic acid behaviour in a calcareous soil: Sorption reactions and biodegradation rates, Soil Biol. Biochem., 33, 2125-2133, doi:10.1016/S0038-0717(01)00146-8, 2001.
    • Ström, L., Owen, A. G., Godbold, D. L., and Jones, D. L.: Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling, Soil Biol. Biochem., 37, 2046-2054, doi:10.1016/j.soilbio.2005.03.009, 2005.
    • Tesar, M., Reichenauer, T. G., and Sessitsch, A.: Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel, Soil Biol. Biochem., 34, 1883-1892, doi:10.1016/S0038-0717(02)00202-X, 2002.
    • Tibbett, M., George, S. J., Davie, A., Barron, A., Milton, N., and Greenwood, P. F.: Just add water and salt: The optimisation of petrogenic hydrocarbon biodegradation in soils from semi-arid Barrow Island, Western Australia, Water Air Soil Poll., 216, 513- 525, doi:10.1007/s11270-010-0549-z, 2011.
    • van Hees, P. A. W, Jones, D. L., and Godbold, D. L.: Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils, Soil Biol. Biochem., 34, 1261-1272, doi:10.1016/S0038-0717(02)00068-8, 2002.
    • van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L., and Lundstrom, U. S.: The carbon we do not see - the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review, Soil Biol. Biochem., 37, 1-13, doi:10.1016/j.soilbio.2004.06.010, 2005.
    • Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M. G., and Lust, N.: Phytoremediation prospects of willow stands on contaminated sediment: A field trial, Environ. Pollut., 126, 275- 282, doi:10.1016/S0269-7491(03)00189-1, 2003.
    • Walkley, A. and Black, I. A.: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29- 38, 1934.
    • Xie, X. M., Liao, M., Yang, J., Chai, J. J., Fang, S., and Wang, R. H.: Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil, Chemosphere, 88, 1190-1195, doi:10.1016/j.chemosphere.2012.03.068, 2012.
    • Yan, F., Schubert, S., and Mengel, K.: Soil pH increase due to biological decarboxylation of organic anions, Soil Biol. Biochem., 28, 617-624, doi:10.1016/0038-0717(95)00180-8, 1996.
    • Yoshitomi, K. and Shann, J.: Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization, Soil Biol. Biochem., 33, 1769-1776, doi:10.1016/S0038-0717(01)00102-X, 2001.
  • No similar publications.

Share - Bookmark

Funded by projects

  • ARC | Development of novel and ef...

Cite this article