LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jehle, R; Arntzen, JW
Publisher: The British Herpetological Society
Languages: English
Types: Article
Subjects: other, QH301, QL
Recent technical advances allow straightforward access to genetic information directly drawn\ud from DNA. The present article highlights the suitability of high variation molecular genetic\ud markers, such as microsatellites, for studies relevant to amphibian conservation. Molecular\ud markers appear particularly useful for i) measuring local gene flow and migration, ii) assigning\ud individuals to their most likely population of origin, iii) measuring effective population size\ud through the between-generation comparison of allele frequencies, and iv) detecting past\ud demographic bottlenecks through allele frequency distortions. We demonstrate the use of some\ud newly developed analytical tools on newt (Triturus sp.) microsatellite data, discuss practical\ud aspects of using microsatellites for amphibians, and outline potential future research directions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexandrino, J., Arntzen, J. W. & Ferrand, N. (2002). Nested clade analysis of phylogeographic data in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Heredity, in press.
    • Alexandrino, J., Froufe, E., Arntzen, J. W. & Ferrand, N. (2000). Genetic subdivision, glacial refugia and postglacial recolonisation in the golden-striped salamander, Chioglossa lusitanica (Amphibia, Urodela). Mol. Ecol. 9, 771-782.
    • Arens, P., van't Westende W., Bugter R., Smulders, J. M. & Vosman, B. (2000). Microsatellite markers for the European treefrog Hyla arborea. Mol. Ecol. 9, 1944- 1945.
    • Arntzen, J. W. (2001). Genetic variation in the Italian crested newt, Triturus carnifex, and the origin of a non-native population north of the Alps. Biodiv. Cons. 10, 971-987.
    • Arntzen, J. W. & García-París, M. (1995). Morphological and allozyme studies of midwife toads (genus Alytes), including the description of two new taxa. Contr. Zool. 65, 5-34.
    • Arntzen, J. W., Smithson, A. & Oldham, R. S. (1999). Marking and tissue sampling effects on body condition and survival in the newtTriturus cristatus. J. Herpetol. 33, 567-576.
    • Banks, M. A. & Eichert, W. (2000) WHICHRUN (version 3.2): A computer program for population assignment of individuals based on multilocus genotype data. J. Hered. 91, 87-89.
    • Basset, P., Balloux, F. & Perrin, N. (2000). Testing demographic models of effective population size. Proc. Roy. Soc. Lond. B. 268, 311-317.
    • Beaumont, M. A. (1999). Detecting population expansion and decline using microsatellites. Genetics 153, 2013- 2029.
    • Beaumont, M. A. & Bruford, M. W. (1999). Microsatellites in conservation genetics. In Microsatellites: Evolution and applications, 165-182. Goldstein, D. & Schlötterer C. (Eds.) Oxford: Oxford University Press.
    • Beebee, T. J. C. & Rowe, G. (2001). Application of genetic bottleneck testing to the investigation of amphibian declines: a case study with natterjack toads. Cons. Biol. 15, 266-270.
    • Beebee, T. J. C., Rowe, G. & Burke, T. (1998). Archive contributions to molecular phylogeography of the toad Bufo calamita in Britain. Biochem. Genet. 36, 219- 228.
    • Beerli, P. & Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA 98, 4563-4568.
    • Beerli, P., Hotz, H.-J., Tunner, H. G., Heppich, S. & Uzzell, T. (1994). Two new water frog species from the Aegean islands Crete and Carpathos (Amphibia, Salientia, Ranidae). Notula Naturae Acad. Nat. Sci. Philadelphia 470, 1-9.
    • Berlin, S., Merilä, J. & Ellegren, H. (2000). Isolation and characterisation of polymorphic microsatellite loci in the common frog, Rana temporaria. Mol. Ecol. 9, 1938.
    • Bernatchez, L. & Duchesne, P. (2000). Individual-based genotype analysis in studies of parentage and population assignment: How many loci, how many alleles? Can. J. Fish. Aquat. Sci. 57, 1-12.
    • Berven, K. A. & Grudzien, T. A. (1990). Dispersal in the wood frog (Rana sylvatica ): implications for population genetic structure. Evolution 44, 2047-2056.
    • Black IV, W. C., Baer, C. F., Antolin, M. F. & DuTeau, N. M. (2001). Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441-469.
    • Brede, E. G., Rowe, G., Trojanowski, J. & Beebee, T. J. C. (2001). Polymerase chain reaction primers for microsatellite loci in the common toad Bufo bufo. Mol. Ecol. Notes 1, 308-311.
    • Busack, S. D. (1986). Biochemical and morphological differentiation in Spanish and Moroccan populations of Discoglossus and the description of a new species from southern Spain (Amphibia, Anura, Discoglossidae). Ann. Carnegie Mus. 55, 41-61.
    • Cornuet, J. M. & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001-2014.
    • Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. (1999). New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989-2000.
    • Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Tr. Ecol. Evol. 15, 290-295.
    • Dawson, K. J. & Belkhir, K. (2001). A Bayesian approach to the identification of panmictic populations and the assignment of individuals. Genet. Res. 78, 59-77.
    • Driscoll, D. A. (1999). Genetic neighbourhood and effective population size for two endangered frogs. Biol. Cons. 88, 221-229.
    • Easteal, S. (1985). The ecological genetics of introduced populations of the giant toad Bufo marinus II. Effective population size. Genetics 110, 107-122.
    • Edwards, S. V. & Hedrick, P. W. (1998). Evolution and ecology of MHC molecules: from genomics to sexual selection. Tr. Ecol. Evol. 13, 305-311.
    • England, P. R. & Osler, G. H. R. (2001). GENELOSS : a computer program for simulating the effects of population bottlenecks on genetic diversity. Mol. Ecol. Notes 1, 111-113.
    • Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Harlow: Longman.
    • Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genet. Res., Cam. 66, 95-107.
    • Franklin, I. R. & Frankham, R. (1998). How large must populations be to maintain evolutionary potential? Anim. Cons. 1, 69-70.
    • Funk, W. C., Tallmon, D. A. & Allendorf, F. W. (1999). Small effective population size in the long-toed salamander. Mol. Ecol. 8, 1633-1640.
    • García-París, M. & Jockush, E. L. (1999). A mitochondrial DNA perspective on the evolution of Iberian Discoglossus (Amphibia: Anura). J. Zool. 248, 209- 218.
    • Garner, T. W. J. (2002). Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45, 212-215.
    • Garner, T. W. J., Gautschi, B., Rothlisberger, S., & Reyer, H.-U. (2000). A set of CA repeat microsatellite markers derived from the pool frog, Rana lessonae. Mol. Ecol. 9, 2173-2175.
    • Garner, T. W. J. & Tomio, G. (2001). Microsatellites for use in studies of the Italian agile frog, Rana latastei (Boulenger). Cons. Genet. 2, 77-80
    • Garza, J. C. & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305-318.
    • Gibbs, M., Dawson, D. A., McCamley, C., Wardle, A. F., Armour, J. A. L. & Burke, T. (1997). Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats. Anim. Genet. 28, 401-417.
    • Gill, D. E. (1978). Effective population size and interdemic migration rates in a metapopulation of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Evolution 32, 839-849.
    • Goldstein, D. B., Roemer, G. W., Smith, D. A., Reich, D. E., Bergman, A. & Wayne, R. K. (1999). The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151, 797-801.
    • Goldstein, D. B. & Schlötterer, C. (1999, Eds.). Microsatellites: Evolution and applications. Oxford: Oxford University Press.
    • Gonser, R. A. & Collura, R. V. (1996). Waste not-want not: toe clips as a source of DNA. J. Herpetol. 30, 445-447.
    • Halley, J., Oldham, R. S. & Arntzen, J. W. (1996). Predicting the persistence of amphibian populations with the help of a spatial model. J. Appl. Ecol. 33, 455-470.
    • Hansen, M. M., Kenchington, E. & Nielson, E. E. (2001). Assigning individual fish to populations using microsatellite DNA markers. Fish and Fisheries 2, 93-112.
    • Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41-49.
    • Hedrick, P. W. (2001). Conservation genetics: where are we now? Tr. Evol. Ecol. 16, 629-636.
    • Hedrick P. W., & Kalinowski, S. T. (2000). Inbreeding depression and conservation. Annu. Rev. Ecol. Syst. 31, 139-162.
    • Higgins, K & Lynch, M. (2001). Metapopulation extinction caused by mutation accumulation. Proc. Natl. Acad. Sci. USA 98, 2928-2933.
    • Hitchings, S. & Beebee, T. J. C. (1997). Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79, 117-127.
    • Hitchings, S. & Beebee, T. J. C. (1998). Loss of genetic diversity and fitness in common toad (Bufo bufo ) populations isolated by inimical habitat. J. Evol. Biol. 11, 269-283.
    • Jamieson, A. (1965). The genetics of transferrins in cattle. Heredity 20, 419-440.
    • Jehle, R., Arntzen, J. W., Burke, T., Krupa, A. P. & Hödl, W. (2001). The annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus). Mol. Ecol. 10, 839-850.
    • Jehle, R., Bouma, P., Sztatecsny, M. & Arntzen, J. W. (2000). High aquatic niche overlap in crested and marbled newts (Triturus cristatus, T. marmoratus). Hydrobiologia 437, 149-155.
    • Kimberling, D. N., Ferreira, A. R., Shuster, S. M. & Keim, P. (1996). RAPD marker estimation of genetic structure among isolated northern leopard frog populations in the south-western USA. Mol. Ecol. 5, 521-529.
    • Krupa, A. P., Jehle, R., Dawson, D. A., Gentle, L. A., Gibbs, M., Arntzen, J. W. & Burke, T. (2001). Microsatellite loci in the crested newt (Triturus cristatus), and their utility in other newt taxa. Cons. Genet. 3, 87-89.
    • Lanza, B., Caputo, V., Nascetti, G. & Bullini, L. (1995). Morphologic and genetic studies of the European plethodontid salamanders: taxonomic inferences (genus Hydromantes). Monografie XVI. Museo Regionale di Scienze Naturali Torino, Torino.
    • Lewontin, R. C. (1991). Twenty-five years ago in genetics. Electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128 , 657- 662.
    • Luikart, G. & England, P. R. (1999). Statistical analysis of microsatellite DNA data. Tr. Ecol. Evol. 14, 253-256.
    • Luikart, G., Allendorf, F. W., Cornuet, J. M., & Sherwin, W. B. (1998a). Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238-247.
    • Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. (1998 b). Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963-974.
    • Lynch, M. & Lande, R. (1998). The critical effective size for a genetically secure population. Anim. Cons. 1, 70- 72.
    • Mace, G. H. & Lande, R. (1991). Assessing extinction threats: towards a re-evaluation of IUCN threatened species categories. Cons. Biol. 5, 148-157.
    • Merrell, D. J. (1968). A comparison of the “effective size” of breeding populations of the leopard frog, Rana pipiens. Evolution 22, 274-283.
    • Moritz, C. (1994). Defining 'evolutionary significant units' for conservation. Tr. Ecol. Evol. 9, 373-375.
    • Neff, B. D. & Gross, M. R. (2001). Microsatellite evolution in vertebrates: inference from AC dicnucleotide repeats. Evolution 55, 1717-1733.
    • Newman, R. A. & Squire, T. (2001). Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol. Ecol. 10, 1087-1101.
    • Nielsen, R. (1997). A likelihood approach to population samples of microsatellite alleles. Genetics 146, 711-716.
    • Nunney, L. & Elam, D. E. (1994). Estimating the effective population size of conserved populations. Cons. Biol. 8, 175-184.
    • Palsböll, P. J. (1999). Genetic tagging: contemporary molecular ecology. Biol. J. Linn. Soc. 68, 3-22.
    • Pannell, J. & Charleworth, B. (2000). Effects of metapopulation processes on measures of genetic diversity. Phil. Trans. R. Soc. Lond. B 355, 1851-1864.
    • Pearse, D. E., Eckerman, C. M., Janzen, F. J. & Avise, J. C. (2001). A genetic analogue of 'mark-recapture' methods for estimating population size: an approach based on molecular parentage assessments. Mol. Ecol. 10, 2711-2719.
    • Pope, L. C., Estoup, A. & Moritz, C. (2000). Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, using mtDNA and microsatellites. Mol. Ecol. 9, 2041-2054.
    • Pope, S. E., Fahrig, L & Merriam, H. G. (2000). Landscape implementation and metapopulation effects on leopard frog populations. Ecology 81, 2498-2508.
    • Prichard, J. K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
    • Primmer, C. R., Koskinen, M. T. & Piironen, J. (2000). The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Roy. Soc. Lond. B 267, 1699- 1704.
    • Rafinski, J. & Babik, W. (2000). Genetic differentiation among northern and southern populations of the moor frog Rana arvalis Nilsson in central Europe. Heredity 84, 610-618.
    • Rannala, B. & Mountain, J. L. (1997). Detecting immigration by using multi-locus genotypes. Proc. Natl. Acad. Sci. USA 94, 9197-9201.
    • Raymond, M. & Rousset, F. (1995). GENEPOP: a population genetic software for exact tests and ecumenicism. J. Hered. 86, 248-249.
    • Reh, W. & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biol. Cons. 54, 239-249.
    • Riberon, A., Miaud, C., Grossenbacher, K. & Taberlet, P. (2001). Phylogeography of the alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence. Mol. Ecol. 10, 2555-2560.
    • Rowe, G. & Beebee, T. J. C. (2001). Polymerase chain reaction primers for microsatellite loci in the common frog Rana temporaria. Mol. Ecol. Notes 1, 6-7.
    • Rowe, G., Beebee, T. J. C. & Burke, T. (1997). PCR primers for polymorphic microsatellites in the anuran amphibian Bufo calamita. Mol. Ecol. 6, 401-402.
    • Rowe, G., Beebee, T. J. C. & Burke, T. (1999). Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita. Anim. Cons. 2, 85- 92.
    • Rowe, G., Beebee, T. J. C. & Burke, T. (2000a) . A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88, 85-92.
    • Rowe, G., Beebee, T. J. C. & Burke, T. (2000b). A further four polymorphic microsatellite loci in the natterjack toad Bufo calamita. Cons. Genet. 1, 371-373.
    • Schwartz, M. K., Tallmon, D. A. & Luikart, G. (1998). Review of DNA-based census and effective population size estimators. Anim. Cons. 1, 293-299.
    • Scribner, K. T., Arntzen, J. W. & Burke, T. (1994). Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, singlelocus microsatellite, minisatellite and multilocus minisatellite data. Mol. Biol. Evol. 11, 737-748.
    • Scribner, K. T., Arntzen, J. W. & Burke, T. (1997). Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Mol. Ecol. 6, 701-712.
    • Scribner, K. T., Arntzen, J. W., Burke, T., Cruddace, N. & Oldham, R. S. (2001). Environmental correlates of toad abundance and population genetic diversity. Biol. Cons. 98, 201-210.
    • Semlitsch, R. D. (2000). Principles for management of aquatic-breeding amphibians. J. Wildl. Manag. 64, 615-613.
    • Seppä, P. & Laurila, A. (1999). Genetic structure of island populations of the anurans Rana temporaria and Bufo bufo. Heredity 82, 309-317.
    • Shaffer, H. B., Fellers, G. M., Magee, A. & Voss, S. R. (2000). The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol. Ecol. 9, 245-257.
    • Sherwin, W. B. & Moritz, C. (2000). Managing and monitoring genetic erosion. In Genetics, demography and viability of fragmented populations, 9-34. Young, A. G. & Clarke, G. M. (Eds.) Cambridge: Cambridge University Press.
    • Spencer, C. C., Neigel, J. E. & Leberg, P. L. (2000). Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol. Ecol. 9, 1517-1528.
    • Sunnucks, P. (2000). Efficient genetic markers for population biology. Tr. Ecol. Evol. 15, 199-203.
    • Szymura, J. M. (1998). Origin of the yellow-bellied toad population, Bombina variegata, from Göritzhain in Saxony. Herp. J. 8, 201-205.
    • Taberlet, P. & Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41-55.
    • Turner, T. F., Salter, L. A. & Gold, J. R. (2001). Temporalmethod estimates of Ne from highly polymorphic loci. Cons. Genet. 2, 297-308.
    • Veith, M. (1996). Molecular markers and species delimitation: examples from the European batrachofauna. Amphibia-Reptilia 17, 303-314.
    • Vos, C. C., Verboom, J., Opdam, P. F. M. & Ter Braak, C. J. F. (2001a). Towards ecologically scaled landscape indices. Am. Nat. 183, 24-41.
    • Vos, C. C., Antonisse-de Jong, A. G., Goedhart, P. W. & Smulders, M. J. M. (2001b). Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86, 598-608.
    • Waldman, B. & Tocher, M. (1997). Behavioural ecology, genetic diversity, and declining amphibian populations. In Behavioural ecology and conservation biology, 394-448. Caro, T. (Ed) Oxford: Oxford University Press.
    • Waples, R. S. (1989). A generalized approach for estimating effective population size from temporal change in gene frequency. Genetics 121, 379-391.
    • Waser, P. M. & Strobeck, C. (1998). Genetic signatures of interpopulation dispersal. Tr. Ecol. Evol. 13, 43-44.
    • Whitlock, M. C. & Barton, N. H. (1997). The effective size of a subdivided population. Genetics 146, 427-441.
    • Williamson, E. G. & Slatkin, M. (1999). Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 152, 755-761.
    • Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97-159.
    • Zeisset, I. & Beebee, T. J. C. (2001). Determination of biogeographical range: an application of molecular phylogeography to the European pool frog Rana lessonae. Proc. Roy. Soc. Lond. B. 268, 933-938.
    • Zeisset, I., Rowe, G. & Beebee, T. J. C. (2000). Polymerase chain reaction primers for microsatellite loci in the north European waterfrogs Rana ridibunda and R. lessonae. Mol. Ecol. 9, 1173-1174.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article