LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lopatář, Ján; Dale, Nicholas; Frenguelli, Bruno G. (2015)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RC

Classified by OpenAIRE into

mesheuropmc: nervous system, musculoskeletal, neural, and ocular physiology
The activation of Group I metabotropic glutamate receptors (GI mGluRs) in the hippocampus results in the appearance of persistent bursts of synchronised neuronal activity. In response to other stimuli, such activity is known to cause the release of the purines ATP and its neuroactive metabolite, adenosine. We have thus investigated the potential release and role of the purines during GI mGluR-induced oscillations in rat hippocampal areas CA3 and CA1 using pharmacological techniques and microelectrode biosensors for ATP and adenosine. The GI mGluR agonist DHPG induced both persistent oscillations in neuronal activity and the release of adenosine in areas CA1 and CA3. In contrast, the DHPG-induced release of ATP was only observed in area CA3. Whilst adenosine acting at adenosine A1 receptors suppressed DHPG-induced burst activity, the activation of mGlu5 and P2Y1 ATP receptors were necessary for the induction of DHPG-induced oscillations. Selective inhibition of pannexin-1 hemichannels with a low concentration of carbenoxolone (10 μM) or probenecid (1 mM) did not affect adenosine release in area CA3, but prevented both ATP release in area CA3 and DHPG-induced bursting. These data reveal key aspects of GI mGluR-dependent neuronal activity that are subject to bidirectional regulation by ATP and adenosine in the initiation and pacing of burst firing, respectively, and which have implications for the role of GI mGluRs in seizure activity and neurodevelopmental disorders.

Share - Bookmark

Cite this article