Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Themistou, E.; Battaglia, G.; Armes, S.P. (2014)
Publisher: RSC Publishing
Languages: English
Types: Article
Biodegradable amphiphilic diblock copolymers based on an aliphatic ester block and various hydrophilic\ud methacrylic monomers were synthesized using a novel hydroxyl-functionalized trithiocarbonate-based\ud chain transfer agent. One protocol involved the one-pot simultaneous ring-opening polymerization\ud (ROP) of the biodegradable monomer (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide, LA) and\ud reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-(dimethylamino)ethyl\ud methacrylate (DMA) or oligo(ethylene glycol) methacrylate (OEGMA) monomer, with 4-\ud dimethylaminopyridine being used as the ROP catalyst and 2,20-azobis(isobutyronitrile) as the initiator for\ud the RAFT polymerization. Alternatively, a two-step protocol involving the initial polymerization of LA\ud followed by the polymerization of DMA, glycerol monomethacrylate or 2-(methacryloyloxy)ethyl\ud phosphorylcholine using 4,40-azobis(4-cyanovaleric acid) as a RAFT initiator was also explored. Using a\ud solvent switch processing step, these amphiphilic diblock copolymers self-assemble in dilute aqueous\ud solution. Their self-assembly provides various copolymer morphologies depending on the block\ud compositions, as judged by transmission electron microscopy and dynamic light scattering. Two novel\ud disulfide-functionalized PLA-branched block copolymers were also synthesized using simultaneous ROP\ud of LA and RAFT copolymerization of OEGMA or DMA with a disulfide-based dimethacrylate. The disulfide\ud bonds were reductively cleaved using tributyl phosphine to generate reactive thiol groups. Thiol–ene\ud chemistry was utilized for further derivatization with thiol-based biologically important molecules and\ud heavy metals for tissue engineering or bioimaging applications, respectively.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 O. W. Webster, Science, 1991, 251, 887-893.
    • 2 M. Barz, F. K. Wolf, F. Canal, K. Koynov, M. J. Vicent, H. Frey and R. Zentel, Macromol. Rapid Commun., 2010, 31, 1492- 1500.
    • 3 J. Z. Du and S. P. Armes, Langmuir, 2008, 24, 13710-13716.
    • 4 J. Z. Du and S. P. Armes, Langmuir, 2009, 25, 9564-9570.
    • 5 J. Z. Du and S. P. Armes, So Matter, 2010, 6, 4851-4857.
    • 6 M. Hales, C. Barner-Kowollik, T. P. Davis and M. H. Stenzel, Langmuir, 2004, 20, 10809-10817.
    • 7 D.-H. Han and C.-Y. Pan, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 789-799.
    • 8 H. Kakwere and S. Perrier, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 6396-6408.
    • 9 C. Lefay, D. Gl´e, M. Rollet, J. Mazzolini, D. Bertin, S. Viel, C. Schmid, C. Boisson, F. D'Agosto, D. Gigmes and C. Barner-Kowollik, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 803-813.
    • 10 J. Li, J. Ren, Y. Cao and W. Yuan, Polymer, 2010, 51, 1301- 1310.
    • 11 A. K. Mishra, V. K. Patel, N. K. Vishwakarma, C. S. Biswas, M. Raula, A. Misra, T. K. Mandal and B. Ray, Macromolecules, 2011, 44, 2465-2473.
    • 12 N. Petzetakis, A. P. Dove and R. K. O'Reilly, Chem. Sci., 2011, 2, 955-960.
    • 13 R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, P. N. P. Lundberg, A. P. Dove, H. Li, C. G. Wade, R. M. Waymouth and J. L. Hedrick, Macromolecules, 2006, 39, 7863-7871.
    • 14 A. O. Saeed, S. Dey, S. M. Howdle, K. J. Thurecht and C. Alexander, J. Mater. Chem., 2009, 19, 4529-4535.
    • 15 C. Schmid, J. Falkenhagen and C. Barner-Kowollik, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 1-10.
    • 16 P.-J. Shi, Y.-G. Li and C.-Y. Pan, Eur. Polym. J., 2004, 40, 1283- 1290.
    • 17 Y. You, C. Hong, W. Wang, W. Lu and C. Pan, Macromolecules, 2004, 37, 9761-9767.
    • 18 K. V. Bernaerts and F. E. Du Prez, Prog. Polym. Sci., 2006, 31, 671-722.
    • 19 S. M. Howdle, C. J. Duxbury, W. X. Wang, M. de Geus and RAFT Polymerization, ed. C. Barner-Kowollik, Wiley-VCH, A. Heise, J. Am. Chem. Soc., 2005, 127, 2384-2385. Weinheim, Germany, 2008, pp. 315-372.
    • 20 S. M. Howdle, J. X. Zhou, S. Villarroya, W. X. Wang, 42 C. Barner-Kowollik and S. Perrier, J. Polym. Sci., Part A: M. F. Wyatt, C. J. Duxbury and K. J. Thurecht, Polym. Chem., 2008, 46, 5715-5723. Macromolecules, 2006, 39, 5352-5358. 43 G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2006,
    • 21 H. U. Kang, Y. C. Yu, S. J. Shin, J. Kim and J. H. Youk, 59, 669-692. Macromolecules, 2013, 46, 1291-1295. 44 S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym.
    • 22 H. U. Kang, Y. C. Yu, S. J. Shin and J. H. Youk, J. Polym. Sci., Chem., 2005, 43, 5347-5393. Part A: Polym. Chem., 2013, 51, 774-779. 45 J. K. Oh, So Matter, 2011, 7, 5096-5108.
    • 23 M. Le Hellaye, C. Lefay, T. P. Davis, M. H. Stenzel and 46 F. Nederberg, E. F. Connor, M. Mo¨ller, T. Glauser and C. Barner-Kowollik, J. Polym. Sci., Part A: Polym. Chem., J. L. Hedrick, Angew. Chem., Int. Ed., 2001, 40, 2712-2715. 2008, 46, 3058-3067. 47 L. F. Zhang and A. Eisenberg, Science, 1995, 268, 1728-1731.
    • 24 Y. K. Li, E. Themistou, J. Zou, B. P. Das, M. Tsianou and 48 A. Blanazs, S. P. Armes and A. J. Ryan, Macromol. Rapid C. Cheng, ACS Macro Lett., 2012, 1, 52-56. Commun., 2009, 30, 267-277.
    • 25 K. Matyjaszewski and W. Jakubowski, Macromol. Symp., 49 G. Battaglia and A. J. Ryan, J. Phys. Chem. B, 2006, 110, 2006, 240, 213-223. 10272-10279.
    • 26 D. Mecerreyes, G. Moineau, P. Dubois, R. Jerome, 50 P. L. Soo and A. Eisenberg, J. Polym. Sci., Part B: Polym. Phys., J. L. Hedrick, C. J. Hawker, E. E. Malmstrom and 2004, 42, 923-938. M. Trollsas, Angew. Chem., Int. Ed., 1998, 37, 1274-1276. 51 C. M. Li, J. Madsen, S. P. Armes and A. L. Lewis, Angew.
    • 27 M. Nasser-Eddine, C. Delaite, G. Hurtrez and P. Dumas, Eur. Chem., Int. Ed., 2006, 45, 3510-3513. Polym. J., 2005, 41, 313-318. 52 J. Madsen, S. P. Armes, K. Bertal, H. Lomas, S. MacNeil and
    • 28 T. Ozturk, M. Goktas and B. Hazer, J. Appl. Polym. Sci., 2010, A. L. Lewis, Biomacromolecules, 2008, 9, 2265-2275. 117, 1638-1645. 53 L. Wang, C. M. Li, A. J. Ryan and S. P. Armes, Adv. Mater.,
    • 29 M. Seo, C. J. Murphy and M. A. Hillmyer, ACS Macro Lett., 2006, 18, 1566-1570. 2013, 2, 617-620. 54 J. C. Gaulding, M. H. Smith, J. S. Hyatt, A. Fernandez-Nieves
    • 30 K. J. Thurecht, A. M. Gregory, S. Villarroya, J. Zhou, A. Heise and L. A. Lyon, Macromolecules, 2012, 45, 39-45. and S. M. Howdle, Chem. Commun., 2006, 42, 4383-4385. 55 A. N. Zelikin, J. F. Quinn and F. Caruso, Biomacromolecules,
    • 31 S. Villarroya, J. Zhou, K. J. Thurecht and S. M. Howdle, 2006, 7, 27-30. Macromolecules, 2006, 39, 9080-9086. 56 J. M. J. Paulusse, R. J. Amir, R. A. Evans and C. J. Hawker, J.
    • 32 C. Cheng, E. Khoshdel and K. L. Wooley, Macromolecules, Am. Chem. Soc., 2009, 131, 9805-9812. 2007, 40, 2289-2292. 57 J. Kamada, K. Koynov, C. Corten, A. Juhari, J. A. Yoon,
    • 33 Y. C. Yu, G. Li, H. U. Kang and J. H. Youk, Colloid Polym. Sci., M. W. Urban, A. C. Balazs and K. Matyjaszewski, 2012, 290, 1707-1712. Macromolecules, 2010, 43, 4133-4139.
    • 34 T. Endo, General Mechanisms in Ring-Opening 58 C. E. Hoyle, A. B. Lowe and C. N. Bowman, Chem. Soc. Rev., Polymerization, in Handbook of Ring-Opening 2010, 39, 1355-1387. Polymerization, ed. P. Dubois, O. Coulembier, J. -M. 59 A. B. Lowe, Polym. Chem., 2010, 1, 17-36. Raquez, Wiley-VCH, Weinheim, Germany, 2009, pp. 53-63 60 N. J. Warren, C. Muise, A. Stephens, S. P. Armes and
    • 35 D. Bourissou, O. Dechy-Cabaret and B. Martin-Vaca, Chem. A. L. Lewis, Langmuir, 2012, 28, 2928-2936. Rev., 2004, 104, 6147-6176. 61 G. Odian, Principles of Polymerization, John Wiley & Sons,
    • 36 K. M. Stridsberg, M. Ryner and A.-C. Albertsson, Controlled Inc., Hoboken, New Jersey, 2004. Ring-Opening Polymerization: Polymers with Designed 62 Y. T. Li and S. P. Armes, Macromolecules, 2005, 38, 8155-8162. Macromolecular Architecture, in Adv. Polym. Sci.: 63 J. Rosselgong and S. P. Armes, Macromolecules, 2012, 45, Degradable Aliphatic Polyesters, Springer-Verlag, Berlin: 2731-2737. Heidelberg, New York, 2002, 157, pp. 41-65. 64 J. Rosselgong, S. P. Armes, W. Barton and D. Price,
    • 37 G. Moad, J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, Macromolecules, 2009, 42, 5919-5924. J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, 65 J. Rosselgong, S. P. Armes, W. R. S. Barton and D. Price, C. L. Moad, E. Rizzardo and S. H. Thang, Macromolecules, Macromolecules, 2010, 43, 2145-2156. 1998, 31, 5559-5562. 66 J. Rosselgong, A. Blanazs, P. Chambon, M. Williams,
    • 38 G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, M. Semsarilar, J. Madsen, G. Battaglia and S. P. Armes, R. T. A. Mayadunne, A. Postma, E. Rizzardo and ACS Macro Lett., 2012, 1, 1041-1045. S. H. Thang, Polym. Int., 2000, 49, 993-1001. 67 C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010,
    • 39 G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2005, 49, 1540-1573. 58, 379-410. 68 J. Zou, C. C. Hew, E. Themistou, Y. K. Li, C. K. Chen,
    • 40 G. Moad, E. Rizzardo and S. H. Thang, Acc. Chem. Res., 2008, P. Alexandridis and C. Cheng, Adv. Mater., 2011, 23, 4274- 41, 1133-1142. 4277.
    • 41 M. H. Stenzel, Complex Architecture Design via the RAFT 69 J. R. McKee, V. Ladmiral, J. Niskanen, H. Tenhu and Process: Scope, Strengths and Limitations, in Handbook of S. P. Armes, Macromolecules, 2011, 44, 7692-7703.
    • 70 S. Olivier and R. Walkenhorst, Mat´eriaux, 2002, 1-5.
    • 71 D. W. van Krevelan and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier Science, Slovenia, 2009.
    • 72 S. C. Rizzi and J. A. Hubbell, Biomacromolecules, 2005, 6, 1226-1238.
    • 73 C. Wu, F. Virzi and D. J. Hnatowich, Nucl. Med. Biol., 1992, 19, 239-244.
    • 74 J. Fichna and A. Janecka, Bioconjugate Chem., 2003, 14, 3-17.
    • 75 S. Liu and D. S. Edwards, Bioconjugate Chem., 2000, 12, 7-34.
    • 76 P. Cerrai, M. Tricoli, L. Lelli, G. D. Guerra, R. S. Delguerra, M. G. Cascone and P. Giusti, J. Mater. Sci.: Mater. Med., 1994, 5, 308-313.
    • 77 N. Kang, M. E. Perron, R. E. Prud'homme, Y. B. Zhang, G. Gaucher and J. C. Leroux, Nano Lett., 2005, 5, 315-319.
    • 78 S. Y. Lee, I. J. Chin and J. S. Jung, Eur. Polym. J., 1999, 35, 2147-2153.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article