LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tang, Selina Vi Yu
Languages: English
Types: Unknown
Subjects:
The field of nanotechnology is growing vastly, both as a field of research and in commercial applications. This rapid growth calls for synthesis methods which can produce high quality nanomaterials, while being scalable.\ud \ud This thesis describes an investigation into the use of a continuous hydrothermal reactor for the synthesis of nanomaterials, with potential use in three different biomedical applications – bone scaffolds, fluorescent biomarkers, and MRI contrast agents.\ud \ud The first chapter of this thesis provides an overview of nanotechnology: the advantages of nanoscale, the commercial industries which can benefit, and the predominant methods currently used to produce nanomaterials. Some advantages and drawbacks of each synthesis route are given, concluding with a description of the Nozzle reactor – the patented technology used for nanomaterial synthesis in this Thesis. Chapter 2 then focusses on the characterisation techniques used in this thesis, detailing the principles of how data is obtained, as well as highlighting the limitations of each method. \ud \ud With the background information in place, chapters 3, 4 and 5 describe more specific nanomaterials and how they can be applied to each of the aforementioned biomedical fields. These chapters provide the technical details of how various nanomaterials can be synthesised using the Nozzle reactor, and the structural data (crystallinity, particle size) obtained from these samples. Furthermore, the functional properties of these nanomaterials are tested and the results, along with a discussion of any trends, are presented.\ud \ud Finally, this thesis concludes with a summary of the results described and emphasises the key areas where further work can be conducted.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ACTION, P. C. 2013. Pancreatic Cancer Action - MRI Scans [Online]. Available: www.pancreaticcanceraction.org.
    • ADSCHIRI, T., HAKUTA, Y. & ARAI, K. 2000. Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Industrial & Engineering Chemistry Research, 39, 4901-4907.
    • ADSCHIRI, T., HAKUTA, Y., SUE, K. & ARAI, K. 2001. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. Journal of Nanoparticle Research, 3, 227-235.
    • ADSCHIRI, T., KANAZAWA, K. & ARAI, K. 1992. Rapid and continuous hydrothermal crystallization of metal-oxide particles in supercritical water. Journal of the American Ceramic Society, 75, 1019-1022.
    • ADSCHIRI, T., LEE, Y. W., GOTO, M. & TAKAMI, S. 2011. Green materials synthesis with supercritical water. Green Chemistry, 13, 1380-1390.
    • AG, S. 2013. Resovist: Information for Radiologists. Available: http://radiologieuni-frankfurt.de/sites/radiologie-unifrankfurt.de/content/e43/e2321/e2331/resofinal_eng.pdf.
    • AIMABLE, A., AYMES, D., BERNARD, F. & LE CRAS, F. 2009a. Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water. Solid State Ionics, 180, 861-866.
    • AIMABLE, A., MUHR, H., GENTRIC, C., BERNARD, F., LE CRAS, F. & AYMES, D. 2009b. Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: Towards a better control of the process. Powder Technology, 190, 99-106.
    • AIMABLE, A., XIN, B., MILLOT, N. & AYMES, D. 2008. Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water. Journal of Solid State Chemistry, 181, 183-189.
    • AKSOMAITYTE, G., POLIAKOFF, M. & LESTER, E. 2013. The production and formulation of silver nanoparticles using continuous hydrothermal synthesis. Chemical Engineering Science, 85, 2-10.
    • AL-DURI, B., PINTO, L., ASHRAF-BALL, N. H. & SANTOS, R. C. D. 2008. Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation (SCWO). Journal of Materials Science, 43, 1421-1428.
    • ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K. & WALTER, P. 2002. The Shape and Structure of Proteins. Molecular Biology of the Cell. 4th ed. New York: Garland Science.
    • ALBREKTSSON, ALBREKTSSON, T., JOHANSSON & JOHANSSON, C. 2001. Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 10, S96-S101.
    • AMAG PHARMACEUTICALS, I. 2013. AMAG Pharmacuticals [Online]. Available: http://www.amagpharma.com/about/partners.php 2013].
    • AMENDOLA, V., MENEGHETTI, M., GRANOZZI, G., AGNOLI, S., POLIZZI, S., RIELLO, P., BOSCAINI, A., ANSELMI, C., FRACASSO, G., COLOMBATTI, M., INNOCENTI, C., GATTESCHI, D. & SANGREGORIO, C. 2011. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. Journal of Materials Chemistry, 21, 3803- 3813.
    • AMIRI, S. & SHOKROLLAHI, H. 2013. The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Science and Engineering C, 33, 1-8.
    • APTE, S. K., GARAJE, S. N., ARBUJ, S. S., KALE, B. B., BAEG, J. O., MULIK, U. P., NAIK, S. D., AMALNERKAR, D. P. & GOSAVI, S. W. 2011. A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. Journal of Materials Chemistry, 21, 19241-19248.
    • AYMES, D., ARIANE, M., BERNARD, F., MUHR, H. & DEMOISSON, F. 2011. Particle synthesis by means of the thermal hydrolysis of mineral precursors. PCT/FR2010/051520.
    • AZIZIAN-KALANDARAGH, Y. & KHODAYARI, A. 2010. Aqueous synthesis and characterization of nearly monodispersed ZnS nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 207, 2144-2148.
    • BAE, H., AHMAD, T., RHEE, I., CHANG, Y., JIN, S.-U. & HONG, S. 2012. Carboncoated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Research Letters, 7, 44.
    • BALLMAN, A. A. & LAUDISE, R. A. 1963. Hydrothermal growth. The Art and Science of Growing Crystals, 231-251.
    • BAMMER, R., SKARE, S., NEWBOULD, R., LIU, C., THIJS, V., ROPELE, S., CLAYTON, D. B., KRUEGER, G., MOSELEY, M. E. & GLOVER, G. H. 2005. Foundations of advanced magnetic resonance imaging. NeuroRx, 2, 167- 196.
    • BAO, X., LIN, M., KOH, H. Z. & ZHANG, Q. 2006. Preparation of Iron Oxide and Iron Oxide/Silicon Oxide Nanoparticles Via Water-in-Oil Microemulsion. Ceramic Nanomaterials and Nanotechnology II. John Wiley & Sons, Inc.
    • BASA, S., MUNIYAPPAN, T., KARATGI, P., PRABHU, R. & PILLAI, R. 2008. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Development and Industrial Pharmacy, 34, 1209-1218.
    • BASF. 2013. Further research on effects of nanomaterials [Online]. http://www.basf.com/group/pressrelease/P-13-323. Available: http://www.basf.com/group/pressrelease/P-13-323.
    • BATEER, B., TIAN, C., QU, Y., DU, S., TAN, T., WANG, R., TIAN, G. & FU, H. 2013. Facile synthesis and shape control of Fe3O4 nanocrystals with good dispersion and stabilization. CrystEngComm, 15, 3366-3371.
    • BAVYKIN, D. V., PARMON, V. N., LAPKIN, A. A. & WALSH, F. C. 2004. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14, 3370-3377.
    • BEZZI, G., CELOTTI, G., LANDI, E., LA TORRETTA, T. M. G., SOPYAN, I. & TAMPIERI, A. 2003. A novel sol-gel technique for hydroxyapatite preparation. Materials Chemistry and Physics, 78, 816-824.
    • BHUSHAN, B. 2010. Springer Handbook of Nanotechnology, Springer.
    • BIO-RAD 2013. CHTTM Ceramic Hydroxyapatite. In: BIO-RAD (ed.). http://www.biorad.com/webroot/web/pdf/psd/literature/Bulletin_5667.pdf.
    • BJØRNERUD, A., JOHANSSON, L. O. & AHLSTRÖM, H. K. 2001. Pre-clinical results with clariscan™ (NC100150 Injection); experience from different disease models. Magnetic Resonance Materials in Physics, Biology and Medicine, 12, 99-103.
    • BLOCK, J. E. & THORN, M. R. 2000. Clinical indications of calcium-phosphate biomaterials and related composites for orthopedic procedures. Calcified Tissue International, 66, 234-238.
    • BLOOD, P. J., DENYER, J. P., AZZOPARDI, B. J., POLIAKOFF, M. & LESTER, E. 2004. A versatile flow visualisation technique for quantifying mixing in a binary system: Application to continuous supercritical water hydrothermal synthesis (SWHS). Chemical Engineering Science, 59, 2853-2861.
    • BOLDRIN, P., HEBB, A. K., CHAUDHRY, A. A., OTLEY, L., THIEBAUT, B., BISHOP, P. & DARR, J. A. 2007. Direct synthesis of nanosized NiCo2O4 spinel and related compounds via continuous hydrothermal synthesis methods. Industrial and Engineering Chemistry Research, 46, 4830-4838.
    • BROWN, M. A. & SEMELKA, R. C. 2010. MRI: Basic Principles and Applications, Wiley-Blackwell.
    • BRUCHEZ JR, M., MORONNE, M., GIN, P., WEISS, S. & ALIVISATOS, A. P. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013-2016.
    • BUFFAT, P. & BOREL, J.-P. 1976. Size effect on the melting temperature of gold particles. Physical Review A, 13, 2287-2298.
    • BYERS, R. J. & HITCHMAN, E. R. 2011. Quantum Dots Brighten Biological Imaging. Progress in Histochemistry and Cytochemistry, 45, 201-237.
    • CABANAS, A., DARR, J. A., LESTER, E. & POLIAKOFF, M. 2000. A continuous and clean one-step synthesis of nano-particulate Ce(1- x)Zr(x)O2 solid solutions in near-critical water. Chemical Communications, 901-902.
    • CABAÑAS, A., LI, J., BLOOD, P., CHUDOBA, T., LOJKOWSKI, W., POLIAKOFF, M. & LESTER, E. 2007. Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures. Journal of Supercritical Fluids, 40, 284-292.
    • CABAÑAS, A. & POLIAKOFF, M. 2001. The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. Journal of Materials Chemistry, 11, 1408-1416.
    • CARBONARO, L. A., PEDICONI, F., VERARDI, N., TRIMBOLI, R. M., CALABRESE, M. & SARDANELLI, F. 2011. Breast MRI using a high-relaxivity contrast agent: An overview. American Journal of Roentgenology, 196, 942-955.
    • CARP, O., PATRON, L., CULITA, D. C., BUDRUGEAC, P., FEDER, M. & DIAMANDESCU, L. 2010. Thermal analysis of two types of dextran-coated magnetite. Journal of Thermal Analysis and Calorimetry, 101, 181-187.
    • CASULA, M. F., CORRIAS, A., AROSIO, P., LASCIALFARI, A., SEN, T., FLORIS, P. & BRUCE, I. J. 2011. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. Journal of Colloid and Interface Science, 357, 50-55.
    • CHAN, W. C. W. & NIE, S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016-2018.
    • CHANG, M. L. & HOU, J. K. 2011. Cancer risk related to gastrointestinal diagnostic radiation exposure. Current Gastroenterology Reports, 13, 449-457.
    • CHAUDHRY, A. A., HAQUE, S., KELLICI, S., BOLDRIN, P., REHMAN, I., KHALID, F. A. & DARR, J. A. 2006. Instant nano-hydroxyapatite: A continuous and rapid hydrothermal synthesis. Chemical Communications, 2286-2288.
    • CHEARY, R. W. & COELHO, A. A. 1996. XFIT. CCP14 Powder Diffraction Library: Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington, England.
    • CHEKINA, N., HORAK, D., JENDELOVA, P., TRCHOVA, M., BENES, M. J., HRUBY, M., HERYNEK, V., TURNOVCOVA, K. & SYKOVA, E. 2011. Fluorescent magnetic nanoparticles for biomedical applications. Journal of Materials Chemistry, 21, 7630-7639.
    • CHEN, N., HE, Y., SU, Y., LI, X., HUANG, Q., WANG, H., ZHANG, X., TAI, R. & FAN, C. 2012. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 33, 1238-1244.
    • CHEN, Z., CAO, Y., QIAN, J., AI, X. & YANG, H. 2010. Facile synthesis and stable lithium storage performances of Sn-sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 20, 7266-7271.
    • CHOI, H., VERIANSYAH, B., KIM, J., KIM, J. D. & KANG, J. W. 2010. Continuous synthesis of metal nanoparticles in supercritical methanol. Journal of Supercritical Fluids, 52, 285-291.
    • CHON CHEN, C., CHENG, C. H. & LIN, C. K. 2013. Template assisted fabrication of TiO2 and WO3 nanotubes. Ceramics International, 39, 6631-6636.
    • CONN, P. M. 2009. Essential Bioimaging Methods, Elsevier Science.
    • CORSO, D., CRUPI, I., AMMENDOLA, G., LOMBARDO, S. & GERARDI, C. 2003. Programming options for nanocrystal MOS memories. Materials Science and Engineering C, 23, 687-689.
    • COVALIU, C. I., BERGER, D., MATEI, C., DIAMANDESCU, L., VASILE, E., CRISTEA, C., IONITA, V. & IOVU, H. 2011. Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. Journal of Nanoparticle Research, 13, 6169-6180.
    • DARBANDI, M., STROMBERG, F., LANDERS, J., RECKERS, N., SANYAL, B., KEUNE, W. & WENDE, H. 2012. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. Journal of Physics D: Applied Physics, 45.
    • DASGUPTA, S., BANERJEE, S. S., BANDYOPADHYAY, A. & BOSE, S. 2010. Znand Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir, 26, 4958-4964.
    • DASOG, M. & VEINOT, J. G. C. 2012. Solid-state synthesis of luminescent silicon nitride nanocrystals. Chemical Communications, 48, 3760-3762.
    • DAWSON, W. J. 1988. Hydrothermal synthesis of advanced ceramic powders. American Ceramic Society Bulletin, 67, 1673-1678.
    • DE LIMA, I. R., ALVES, G. G., DE OLIVEIRA FERNANDES, G. V., DIAS, E. P., DE ALMEIDA SOARES, G. & GRANJEIRO, J. M. 2010. Evaluation of the in vivo biocompatibility of hydroxyapatite granules incorporated with zinc ions. Materials Research, 13, 563-568.
    • DEMAZEAU, G. Solvothermal and Hydrothermal Processes: Main PhysicoChemical Factors Involved and New Trends. International Solvothermal and Hydrothermal Association Conference, 2010 Beijing, China.
    • DEMOISSON, F., ARIANE, M., LEYBROS, A., MUHR, H. & BERNARD, F. 2011. Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials. Journal of Supercritical Fluids, 58, 371-377.
    • DICKERSON, B. D. 2005. Organometallic synthesis kinetics of CdSe quantum dots. Virginia Polytechnic Institute and State University.
    • DING, J., TAO, K., LI, J., SONG, S. & SUN, K. 2010. Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids and Surfaces B: Biointerfaces, 79, 184-190.
    • DURÁN, J. D. G., GUINDO, M. C., DELGADO, A. V. & GONZÁLEZ-CABALLERO, F. 1995. Stability of monodisperse zinc sulfide colloidal dispersions. Langmuir, 11, 3648-3655.
    • DUTTA, S., PARK, J. A., JUNG, J. C., CHANG, Y. & KIM, T. J. 2008. Gd-complexes of DTPA-bis(amide) conjugates of tranexamic acid and its esters with high relaxivity and stability for magnetic resonance imaging. Dalton Transactions, 2199-2206.
    • EARL, J. S., WOOD, D. J. & MILNE, S. J. 2006. Hydrothermal synthesis of hydroxyapatite. Journal of Physics: Conference Series, 26, 268-271.
    • ELOUALI, S., BLOOR, L. G., BINIONS, R., PARKIN, I. P., CARMALT, C. J. & DARR, J. A. 2012. Gas sensing with nano-indium oxides (In 2O 3) prepared via continuous hydrothermal flow synthesis. Langmuir, 28, 1879-1885.
    • FANG, Z. 2010. Rapid Production of Micro- and Nano-particles Using Supercritical Water, Springer Berlin Heidelberg.
    • FANUN, M. 2010. Microemulsions: Properties and Applications, Taylor & Francis.
    • FIGGEMEIER, E., KYLBERG, W., CONSTABLE, E., SCARISOREANU, M., ALEXANDRESCU, R., MORJAN, I., SOARE, I., BIRJEGA, R., POPOVICI, E., FLEACA, C., GAVRILA-FLORESCU, L. & PRODAN, G. 2007. Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties. Applied Surface Science, 254, 1037-1041.
    • FIRMANSYAH, D. A., KIM, S. G., LEE, K. S., ZAHAF, R., KIM, Y. H. & LEE, D. 2012. Microstructure-controlled aerosol-gel synthesis of ZnO quantum dots dispersed in SiO 2 nanospheres. Langmuir, 28, 2890-2896.
    • FLEGLER, S., HECKMAN JR, J. & KLOMPARENS, K. 1995. Scanning and transmission electron microscopy: an introduction, Oxford University Press.
    • FRENKEL, J. & DORFMAN, J. 1930. Spontaneous and induced magnetisation in ferromagnetic bodies [1]. Nature, 126, 274-275.
    • GANGULI, A. K., AHMAD, T., VAIDYA, S. & AHMED, J. 2008. Microemulsion route to the synthesis of nanoparticles. Pure and Applied Chemistry, 80, 2451- 2477.
    • GEINGUENAUD, F., SOUISSI, I., FAGARD, R., MOTTE, L. & LALATONNE, Y. 2012. Electrostatic assembly of a DNA superparamagnetic nano-tool for simultaneous intracellular delivery and in situ monitoring. Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 1106-1115.
    • GERMAN, R. M. 2010. Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Critical Reviews in Solid State and Materials Sciences, 35, 263-305.
    • GESZKE-MORITZ, M. & MORITZ, M. 2013. Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Materials Science and Engineering: C, 33, 1008-1021.
    • GIMENO-FABRA, M., MUNN, A. S., STEVENS, L. A., DRAGE, T. C., GRANT, D. M., KASHTIBAN, R. J., SLOAN, J., LESTER, E. & WALTON, R. I. 2012. Instant MOFs: Continuous synthesis of metal-organic frameworks by rapid solvent mixing. Chemical Communications, 48, 10642-10644.
    • GLADSTONE, H. B., MCDERMOTT, M. W. & COOKE, D. D. 1995. Implants for cranioplasty. Otolaryngologic Clinics of North America, 28, 381-400.
    • GRIFFITH, E. M. & DANILATOS, G. D. 1993. Environmental scanning electron microscopy, Wiley-Liss.
    • GRIFFITHS, S. L. & CARTMELL, S. H. 2007. Use of statins for enhancing bonetissue-engineered grafts. European Journal of Plastic Surgery, 1-7.
    • GRUAR, R. I., TIGHE, C. J. & DARR, J. A. 2013. Scaling-up a confined jet reactor for the continuous hydrothermal manufacture of nanomaterials. Industrial and Engineering Chemistry Research, 52, 5270-5281.
    • GRUAR, R. I., TIGHE, C. J., MUIR, J., KITTLER, J. T., WODJAK, M., KENYON, A. J. & DARR, J. A. 2012. Continuous hydrothermal synthesis of surfacefunctionalised nanophosphors for biological imaging. RSC Advances, 2, 10037-10047.
    • HABRAKEN, W. J. E. M., WOLKE, J. G. C. & JANSEN, J. A. 2007. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 234-248.
    • HAKUTA, Y., ONAI, S., TERAYAMA, H., ADSCHIRI, T. & ARAI, K. 1998. Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. Journal of Materials Science Letters, 17, 1211- 1213.
    • HAKUTA, Y., URA, H., HAYASHI, H. & ARAI, K. 2005. Effects of hydrothermal synthetic conditions on the particle size of -AγlO(OH) in sub and supercritical water using a flow reaction system. Materials Chemistry and Physics, 93, 466-472.
    • HALLMANN, S., FINK, M. J. & MITCHELL, B. S. 2011. The mechanochemical formation of functionalized semiconductor nanoparticles for biological, electronic and superhydrophobic surface applications. Houston, TX.
    • HANWHA. 2013. Hanwha Chemical Co. Ltd [Online]. Available: http://hcc.hanwha.co.kr/eng/index_eng.jsp 2013].
    • HARISINGHANI, M. G., BARENTSZ, J., HAHN, P. F., DESERNO, W. M., TABATABAEI, S., VAN DE KAA, C. H., DE LA ROSETTE, J. & WEISSLEDER, R. 2003. Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. New England Journal of Medicine, 348, 2491-2499.
    • HAW, C. Y., MOHAMED, F., CHIA, C. H., RADIMAN, S., ZAKARIA, S., HUANG, N. M. & LIM, H. N. 2010. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceramics International, 36, 1417-1422.
    • HEALTHCARE, G. 2013. Omniscan [Online]. Available: http://www3.gehealthcare.com/en/Products/Categories/Contrast_Media/ Omniscan#tabs/tab488621DABE7848C7837C18A88CFE9FFF 2013].
    • HEESAKKERS, R. A. M., JAGER, G. J., HÖVELS, A. M., DE HOOP, B., VAN DEN BOSCH, H. C. M., RAAT, F., WITJES, J. A., MULDERS, P. F. A., VAN DER KAA, C. H. & BARENTSZ, J. O. 2009. Prostate cancer: Detection of lymph node metastases outside the routine surgical area with ferumoxtran-10- enhanced MR imaging. Radiology, 251, 408-414.
    • HEO, J. & LIU, C. 2007. Pbs quantum-dots in glass matrix for universal fiberoptic amplifier. Journal of Materials Science: Materials in Electronics, 18, 135-139.
    • HOBBS, H., BRIDDON, S. & LESTER, E. 2009. The synthesis and fluorescent properties of nanoparticulate ZrO(2) doped with Eu using continuous hydrothermal synthesis. Green Chemistry, 11, 484-491.
    • HONG, S.-A., KIM, S. J., CHUNG, K. Y., CHUN, M.-S., LEE, B. G. & KIM, J. 2013. Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: Effect of mixing tee. The Journal of Supercritical Fluids, 73, 70-79.
    • HU, D., ZHANG, P., GONG, P., LIAN, S., LU, Y., GAO, D. & CAI, L. 2011. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale, 3, 4724- 4732.
    • HUDGINS, P. A., ANZAI, Y., MORRIS, M. R. & LUCAS, M. A. 2002. Ferumoxtran10, A Superparamagnetic Iron Oxide as a Magnetic Resonance Enhancement Agent for Imaging Lymph Nodes: A Phase 2 Dose Study. American Journal of Neuroradiology, 23, 649-656.
    • IOKU, K., YOSHIMURA, M. & SOMIYA, S. 1988. Post-sintering of apatite ceramics from fine powders synthesized under hydrothermal conditions. Journal of the Ceramic Society of Japan. International ed., 96, 111-112.
    • ISASI-MARÍN, J., PÉREZ-ESTÉBANEZ, M., DÍAZ-GUERRA, C., CASTILLO, J. F., CORRECHER, V. & CUERVO-RODRÍGUEZ, M. R. 2009. Structural, magnetic and luminescent characteristics of Pr 3+-doped ZrO2 powders synthesized by a sol-gel method. Journal of Physics D: Applied Physics, 42.
    • JADHAV, S. A. & BONGIOVANNI, R. 2012. Synthesis and organic functionalization approaches for magnetite (Fe3O4) nanoparticles. Advanced Materials Letters, 3, 356-361.
    • JADHAV, S. B. & JAIN, G. K. 2006. Statins and osteoporosis: New role for old drugs. Journal of Pharmacy and Pharmacology, 58, 3-18.
    • JAMIESON, T., BAKHSHI, R., PETROVA, D., POCOCK, R., IMANI, M. & SEIFALIAN, A. M. 2007. Biological applications of quantum dots. Biomaterials, 28, 4717-4732.
    • JIN, T., SUN, D., SU, J. Y., ZHANG, H. & SUE, H. J. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 74, M46-M52.
    • KALITA, S. J. & BHATT, H. A. 2007. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Materials Science and Engineering: C, 27, 837-848.
    • KALITA, S. J. & VERMA, S. 2010. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization. Materials Science and Engineering C, 30, 295-303.
    • KARIMI, Z., KARIMI, L. & SHOKROLLAHI, H. 2013. Nano-magnetic particles used in biomedicine: Core and coating materials. Materials Science and Engineering C, 33, 2465-2475.
    • KASUGA, T., HIRAMATSU, K., HOSON, A., SEKINO, T. & NIIHARA, K. 1998. Formation of Titanium Oxide Nanotube. Langmuir, 1998, 3160-3163.
    • KAWASAKI, S. I., SUE, K., OOKAWARA, R., WAKASHIMA, Y., SUZUKI, A., HAKUTA, Y. & ARAI, K. 2010. Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: Experimental synthesis of NiO nanoparticles and CFD simulation. Journal of Supercritical Fluids, 54, 96-102.
    • KHODADADI-MOGHADDAM, M., SALIMI, F., SAHEBALZAMANI, H. & JAFARI, N. 2013. Synthesis of Fe2O3 nanoparticles via various methods and coating with silica for drug immobilization. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 43, 1224-1227.
    • KIM, J., PARK, Y. S., VERIANSYAH, B., KIM, J. D. & LEE, Y. W. 2008. Continuous synthesis of surface-modified metal oxide nanoparticles using supercritical methanol for highly stabilized nanofluids. Chemistry of Materials, 20, 6301-6303.
    • KIM, K., JEONG, S., WOO, J. Y. & HAN, C. S. 2012. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs. Nanotechnology, 23.
    • KONG, H. Y., HWANG, C. S. & BYUN, J. 2012. Biological toxicity changes of mercaptoacetic acid and mercaptopropionic acid upon coordination onto ZnS:Mn nanocrystal. Bulletin of the Korean Chemical Society, 33, 657- 662.
    • KRITZER, P., BOUKIS, N. & DINJUS, E. 1999. Factors controlling corrosion in high-temperature aqueous solutions: A contribution to the dissociation and solubility data influencing corrosion processes. Journal of Supercritical Fluids, 15, 205-227.
    • KROL, S., MACREZ, R., DOCAGNE, F., DEFER, G., LAURENT, S., RAHMAN, M., HAJIPOUR, M. J., KEHOE, P. G. & MAHMOUDI, M. 2013. Therapeutic benefits from nanoparticles: The potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chemical Reviews, 113, 1877-1903.
    • LAAKSONEN, T., LIU, P., RAHIKKALA, A., PELTONEN, L., KAUPPINEN, E. I., HIRVONEN, J., JÄRVINEN, K. & RAULA, J. 2011. Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharmaceutical Research, 28, 2403- 2411.
    • LANG, J., LI, X., YANG, J., YANG, L., ZHANG, Y., YAN, Y., HAN, Q., WEI, M., GAO, M., LIU, X. & WANG, R. 2011. Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method. Applied Surface Science, 257, 9574-9577.
    • LAUGIER, J. 1999. Celref v3. Laboratoire des Materiaux et du G nie Physique de l′Ecole Superieure de Physique de Grenoble, France.
    • LEPRÊTRE, S., CHAI, F., HORNEZ, J. C., VERMET, G., NEUT, C., DESCAMPS, M., HILDEBRAND, H. F. & MARTEL, B. 2009. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials, 30, 6086-6093.
    • LESTER, E., AKSOMAITYTE, G., LI, J., GOMEZ, S., GONZALEZ-GONZALEZ, J. & POLIAKOFF, M. 2012. Controlled continuous hydrothermal synthesis of cobalt oxide (Co 3O 4) nanoparticles. Progress in Crystal Growth and Characterization of Materials, 58, 3-13.
    • LESTER, E., BLOOD, P., DENYER, J., GIDDINGS, D., AZZOPARDI, B. & POLIAKOFF, M. 2006. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. Journal of Supercritical Fluids, 37, 209-214.
    • LESTER, E., TANG, S. V. Y., KHLOBYSTOV, A., ROSE, V. L., BUTTERY, L. & ROBERTS, C. J. 2013. Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis. CrystEngComm, 15, 3256-3260.
    • LESTER, E. H. & AZZOPARDI, B. J. 2005. Counter Current Mixing Reactor. WO2005/077505.
    • LEYBROS, A., PIOLET, R., ARIANE, M., MUHR, H., BERNARD, F. & DEMOISSON, F. 2012. CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor. Journal of Supercritical Fluids, 70, 17-26.
    • LI, B., WANG, X. L., GUO, B., XIAO, Y. M., FAN, H. S. & ZHANG, X. D. 2007. Preparation and characterization of nano hydroxyapatite. Key Engineering Materials, 330-332, 235-238.
    • LI, J. 2008. Engineering Nanoparticles in Near-critical and Supercritical Water. Ph.D Chemical Engineering The University of Nottingham.
    • LI, S., ZHAO, H. & TIAN, D. 2013. Aqueous synthesis of highly monodispersed thiol-capped CdSe quantum dots based on the electrochemical method. Materials Science in Semiconductor Processing, 16, 149-153.
    • LIN, T., KELLICI, S., GONG, K., THOMPSON, K., EVANS, J. R. G., WANG, X. & DARR, J. A. 2010. Rapid automated materials synthesis instrument: Exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. Journal of Combinatorial Chemistry, 12, 383-392.
    • LIU, H. & WEBSTER, T. J. 2007. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials, 28, 354-369.
    • LIU, M., ZHAO, H., CHEN, S., WANG, H. & QUAN, X. 2012. Photochemical synthesis of highly fluorescent CdTe quantum dots for "on-off-on" detection of Cu(II) ions. Inorganica Chimica Acta, 392, 236-240.
    • LIU, Y., ZHAN, J., REN, M., TANG, K., YU, W. & QIAN, Y. 2001. Hydrothermal synthesis of square thin flake CdS by using surfactants and thiocarbohydrate. Materials Research Bulletin, 36, 1231-1236.
    • LÓPEZ-QUINTELA, M. A., RIVAS, J., BLANCO, M. C. & TOJO, C. 2004. Synthesis of Nanoparticles in Microemulsions. In: LIZ-MARZÁN, L. & KAMAT, P. (eds.) Nanoscale Materials. Springer US.
    • LORYUENYONG, V., BUASRI, A., POCHANA, J., HOSAWANGWONG, S., THAISAUNG, S. & SOOKSAEN, P. 2013. Synthesis of anatase TiO2 nanoparticles by template sol-gel method and its application in photocatalytic degradation of organic pollutants. Advanced Science Letters, 19, 2919-2922.
    • LU, A. H., SALABAS, E. L. & SCHÜTH, F. 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie - International Edition, 46, 1222-1244.
    • LU, J., HAKUTA, Y., HAYASHI, H., OHASHI, T., NAGASE, T., HOSHI, Y., SATO, K., NISHIOKA, M., INOUE, T. & HAMAKAWA, S. 2008. Preparation of Ca0.8Sr0.2Ti1-xFexO3-δ (x = 0.-10.3) nanoparticles using a flow supercritical reaction system. Journal of Supercritical Fluids, 46, 77-82.
    • LU, J., MINAMI, K., TAKAMI, S. & ADSCHIRI, T. 2013. Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification. Chemical Engineering Science, 85, 50-54.
    • LUAN, W., YANG, H., WAN, Z., YUAN, B., YU, X. & TU, S. T. 2012. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead(II). Journal of Nanoparticle Research, 14, 1-8.
    • LUBRIZOL. 2013. Hyperdispersants - Technology and Benfits.
    • MALVERN. 2013. Dynamic Light Scattering [Online]. Available: http://www.malvern.com.
    • MANH, D. H., THUAN, N. C., PHONG, P. T., HONG, L. V. & PHUC, N. X. 2009. Magnetic properties of La0.7Ca0.3MnO3 nanoparticles prepared by reactive milling. Journal of Alloys and Compounds, 479, 828-831.
    • MANSFIELD, P. & MAUDSLEY, A. A. 1977. Medical imaging by NMR. British Journal of Radiology, 50, 188-194.
    • MANSFIELD, P. & PYKETT, I. L. 1978. Biological and medical imaging by NMR. Journal of Magnetic Resonance (1969), 29, 355-373.
    • MASTROGIACOMO, M., SCAGLIONE, S., MARTINETTI, R., DOLCINI, L., BELTRAME, F., CANCEDDA, R. & QUARTO, R. 2006. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials, 27, 3230-3237.
    • MATSUI, K., NOGUCHI, T., ISLAM, N. M., HAKUTA, Y. & HAYASHI, H. 2008. Rapid synthesis of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. Journal of Crystal Growth, 310, 2584-2589.
    • MCCANN, T. E., KOSAKA, N., TURKBEY, B., MITSUNAGA, M., CHOYKE, P. L. & KOBAYASHI, H. 2011. Molecular imaging of tumor invasion and metastases: The role of MRI. NMR in Biomedicine, 24, 561-568.
    • MONMA, H. & KAMIYA, T. 1987. Preparation of hydroxyapatite by the hydrolysis of brushite. Journal of Materials Science, 22, 4247-4250.
    • MONTAZERI, N., JAHANDIDEH, R. & BIAZAR, E. 2011. Synthesis of fluorapatitehydroxyapatite nanoparticles and toxicity investigations. International journal of nanomedicine, 6, 197-201.
    • MORNET, S., VASSEUR, S., GRASSET, F. & DUGUET, E. 2004. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14, 2161-2175.
    • MORO, F., TANG, S. V. Y., TUNA, F. & LESTER, E. 2013. Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. Journal of Magnetism and Magnetic Materials, 348, 1-7.
    • MOSEKE, C. & GBURECK, U. 2010. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 6, 3815-3823.
    • MOUSAVAND, T., OHARA, S., UMETSU, M., ZHANG, J., TAKAMI, S., NAKA, T. & ADSCHIRI, T. 2007. Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water. Journal of Supercritical Fluids, 40, 397-401.
    • MOUSAVAND, T., TAKAMI, S., UMETSU, M., OHARA, S. & ADSCHIRI, T. 2006. Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. Journal of Materials Science, 41, 1445-1448.
    • MROZ, W., BOMBALSKA, A., BURDYNSKA, S., JEDYNSKI, M., PROKOPIUK, A., BUDNER, B., SLOSARCZYK, A., ZIMA, A., MENASZEK, E., SCISLOWSKACZARNECKA, A. & NIEDZIELSKI, K. 2010. Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture. Journal of Molecular Structure, 977, 145-152.
    • MU, B., ZHONG, W., DONG, Y., DU, P. & LIU, P. 2012. Encapsulation of drug microparticles with self-assembled Fe 3O 4/alginate hybrid multilayers for targeted controlled release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 100 B, 825-831.
    • NANDA, K. K., MAISELS, A., KRUIS, F. E., FISSAN, H. & STAPPERT, S. 2003. Higher Surface Energy of Free Nanoparticles. Physical Review Letters, 91, 1061021-1061024.
    • NANO.GOV. 2013. What's So Special about the Nanoscale? [Online]. Available: http://www.nano.gov/nanotech-101/special.
    • NANOCO. 2013. Nanoco Group Plc [Online]. Available: http://www.nanocotechnologies.com/].
    • NASSAR, M. Y. 2013. Size-controlled synthesis of CoCO3 and Co3O 4 nanoparticles by free-surfactant hydrothermal method. Materials Letters, 94, 112-115.
    • NETZ, D. J. A., SEPULVEDA, P., PANDOLFELLI, V. C., SPADARO, A. C. C., ALENCASTRE, J. B., BENTLEY, M. & MARCHETTI, J. M. 2001. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system. International Journal of Pharmaceutics, 213, 117-125.
    • NI, S., YANG, X. & LI, T. 2011. Hydrothermal synthesis and photoluminescence properties of SrCO3. Materials Letters, 65, 766-768.
    • NOGUCHI, T., MATSUI, K., ISLAM, N. M., HAKUTA, Y. & HAYASHI, H. 2008. Rapid synthesis of -γAl2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system. Journal of Supercritical Fluids, 46, 129-136.
    • OGI, T., KAIHATSU, Y., ISKANDAR, F., TANABE, E. & OKUYAMA, K. 2009. Synthesis of nanocrystalline GaN from Ga2O3 nanoparticles derived from salt-assisted spray pyrolysis. Advanced Powder Technology, 20, 29-34.
    • OH, K. S., KIM, K. J., JEONG, Y. K., PARK, E. K., KIM, S. Y., KWON, J. H., RYOO, H. M. & SHIN, H. I. 2004. Cytotoxicity and antimicrobial effect of Ag doped hydroxyapatite. In: MANDAL, H. & OVECOGLU, L. (eds.) Key Engineering Materials. Istanbul.
    • OHARA, S., MOUSAVAND, T., SASAKI, T., UMETSU, M., NAKA, T. & ADSCHIRI, T. 2008. Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. Journal of Materials Science, 43, 2393- 2396.
    • OLDENDORF, W. 1988. Basics of Magnetic Resonance Imaging, Springer.
    • ORLOVSKII, V. P., KOMLEV, V. S. & BARINOV, S. M. 2002. Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials, 38, 973-984.
    • OSAKA, A., MIURA, Y., TAKEUCHI, K., ASADA, M. & TAKAHASHI, K. 1991. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. Journal of Materials Science: Materials in Medicine, 2, 51-55.
    • PARK, J. B. 2009. The use of simvastatin in bone regeneration. Medicina Oral, Patologia Oral y Cirugia Bucal, 14, e485-e488.
    • PARK, J. J., PRABHAKARAN, P., JANG, K. K., LEE, Y., LEE, J., LEE, K., HUR, J., KIM, J. M., CHO, N., SON, Y., YANG, D. Y. & LEE, K. S. 2010. Photopatternable quantum dots forming quasi-ordered arrays. Nano Letters, 10, 2310-2317.
    • PARKER, J. E., THOMPSON, S. P., COBB, T. M., YUAN, F., POTTER, J., LENNIE, A. R., ALEXANDER, S., TIGHE, C. J., DARR, J. A., COCKCROFT, J. C. & TANG, C. C. 2011. High-throughput powder diffraction on beamline I11 at Diamond. Journal of Applied Crystallography, 44, 102-110.
    • PARKES, L. M., HODGSON, R., LU, L. T., TUNG, L. D., ROBINSON, I., FERNIG, D. G. & THANH, N. T. K. 2008. Cobalt nanoparticles as a novel magnetic resonance contrast agent - Relaxivities at 1.5 and 3 Tesla. Contrast Media and Molecular Imaging, 3, 150-156.
    • PIÑERO-HERNANZ, R., DODDS, C., HYDE, J., GARCÍA-SERNA, J., POLIAKOFF, M., LESTER, E., COCERO, M. J., KINGMAN, S., PICKERING, S. & WONG, K. H. 2008. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A: Applied Science and Manufacturing, 39, 454-461.
    • POOLE, P. J., KAMINSKA, K., BARRIOS, P., LU, Z. & LIU, J. 2009. Growth of InAs/InP-based quantum dots for 1.55 μm laser applicationJso.urnal of Crystal Growth, 311, 1482-1486.
    • POSNER, A. S., PERLOFF, A. & DIORIO, A. F. 1958. Refinement of the hydroxyapatite structure. Acta. Cryst., 11, 308.
    • RAHMAN, S., NADEEM, K., ANIS-UR-REHMAN, M., MUMTAZ, M., NAEEM, S. & LETOFSKY-PAPST, I. 2013. Structural and magnetic properties of ZnMgferrite nanoparticles prepared using the co-precipitation method. Ceramics International, 39, 5235-5239.
    • REN, H. B. & YAN, X. P. 2012. Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg2-adenosine triphosphatearginine ternary system. Talanta, 97, 16-22.
    • RONDA, C. R. 2008. Luminescence, Wiley.
    • ROSLI, S. A., ZUBIR, Z. A. & AZIZ, N. M. A. 2012. Characterization of zns nanoparticles using Mpa as capping agents. Selangor.
    • ROTELLO, V. M. 2004. Nanoparticles: Building Blocks for Nanotechnology, Kluwer Academic/Plenum Publishers.
    • SAHRANESHIN, A., ASAHINA, S., TOGASHI, T., SINGH, V., TAKAMI, S., HOJO, D., ARITA, T., MINAMI, K. & ADSCHIRI, T. 2012a. Surfactant-assisted hydrothermal synthesis of water-dispersible hafnium oxide nanoparticles in highly alkaline media. Crystal Growth and Design, 12, 5219-5226.
    • SAHRANESHIN, A., TAKAMI, S., HOJO, D., ARITA, T., MINAMI, K. & ADSCHIRI, T. 2012b. Mechanistic study on the synthesis of one-dimensional yttrium aluminum garnet nanostructures under supercritical hydrothermal conditions in the presence of organic amines. CrystEngComm, 14, 6085- 6092.
    • SAMPATHKUMARAN, E. V., MUKHERJEE, K., IYER, K. K., MOHAPATRA, N. & DAS, S. D. 2011. Magnetism of fine particles of kondo lattices, obtained by high-energy ball-milling. Journal of Physics Condensed Matter, 23.
    • SANTRA, P. K. & KAMAT, P. V. 2012. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. Journal of the American Chemical Society, 134, 2508-2511.
    • SARASWATHI AMMA, B., MANZOOR, K., RAMAKRISHNA, K. & PATTABI, M. 2008. Synthesis and optical properties of CdS/ZnS coreshell nanoparticles. Materials Chemistry and Physics, 112, 789-792.
    • SATO, T., IIJIMA, T., SEKI, M. & INAGAKI, N. 1987. Magnetic properties of ultrafine ferrite particles. Journal of Magnetism and Magnetic Materials, 65, 252-256.
    • SATO, T., SUE, K., SUZUKI, W., SUZUKI, M., MATSUI, K., HAKUTA, Y., HAYASHI, H., ARAI, K., KAWASAKI, S. I., KAWAI-NAKAMURA, A. & HIAKI, T. 2008. Rapid and continuous production of ferrite nanoparticles by hydrothermal synthesis at 673 K and 30 MPa. Industrial and Engineering Chemistry Research, 47, 1855-1860.
    • SEKINO, T., OKAMOTO, T., KASUGA, T., KUSUNOSE, T., NAKAYAMA, T. & NIIHARA, K. 2006. Synthesis and properties of titania nanotube doped with small amount of cations. Key Engineering Materials, 317-318, 251- 254.
    • SENTHILKUMAAR, S. & SELVI, R. T. 2008. Synthesis and Characterization of One Dimensional ZnS Nanorods. Synthesis and Reactivity in Inorganic MetalOrganic and Nano-Metal Chemistry, 38, 710-715.
    • SEPULVEDA, P., BINNER, J. G. P., ROGERO, S. O., HIGA, O. Z. & BRESSIANI, J. C. 2000. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. Journal of Biomedical Materials Research, 50, 27-34.
    • SHARMA, A., PANDEY, C. M., SUMANA, G., SONI, U., SAPRA, S., SRIVASTAVA, A. K., CHATTERJEE, T. & MALHOTRA, B. D. 2012. Chitosan encapsulated quantum dots platform for leukemia detection. Biosensors and Bioelectronics, 38, 107-113.
    • SHARMA, M., KUMAR, S. & PANDEY, O. P. 2010. Study of energy transfer from capping agents to intrinsic vacancies/defects in passivated ZnS nanoparticles. Journal of Nanoparticle Research, 12, 2655-2666.
    • SHEN, L., CUI, X., QI, H. & ZHANG, C. 2007. Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. Journal of Physical Chemistry C, 111, 8172-8175.
    • SHIN, N. C., LEE, Y. H., SHIN, Y. H., KIM, J. & LEE, Y. W. 2010. Synthesis of cobalt nanoparticles in supercritical methanol. Materials Chemistry and Physics, 124, 140-144.
    • SHYMAN. 2013. Sustainable Hydrothermal Manufacturing of Nanomaterials [Online]. http://www.shyman.eu/. Available: http://www.shyman.eu/ 2013].
    • SOHRABNEZHAD, S. & VALIPOUR, A. 2013. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 114, 298-302.
    • SOMIYA, S. & ROY, R. 2000. Hydrothermal synthesis of fine oxide powders. Bulletin of Materials Science, 23, 453-460.
    • STANIĆ, V., DIMITRIJEVIĆ, S., ANTI-ĆSTANKOVIĆ, J., MITRIĆ, M., JOKIĆ, B., PLEĆAŠ, I. B. & RAIČEVIĆ, S. 2010. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science, 256, 6083-6089.
    • STANIC, V., JANACKOVIC, D., DIMITRIJEVIC, S., TANASKOVIC, S. B., MITRIC, M., PAVLOVIC, M. S., KRSTIC, A., JOVANOVIC, D. & RAICEVIC, S. 2011. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Applied Surface Science, 257, 4510-4518.
    • STEPHEN, Z. R., KIEVIT, F. M. & ZHANG, M. 2011. Magnetite nanoparticles for medical MR imaging. Materials Today, 14, 330-338.
    • STURMAN, B. D., ROUSE, R. C. & DUNN, P. J. 1981. Parascholzite, a new mineral from Hagendorf, Bavaria, and its relationship to scholzite. American Mineralogist, 66, 843-851.
    • SUE, K., AOKI, M., SATO, T., NISHIO-HAMANE, D., KAWASAKI, S. I., HAKUTA, Y., TAKEBAYASHI, Y., YODA, S., FURUYA, T. & HIAKI, T. 2011. Continuous hydrothermal synthesis of nickel ferrite nanoparticles using a central collision-type micromixer: Effects of temperature, residence time, metal salt molality, and naoh addition on conversion, particle size, and crystal phase. Industrial and Engineering Chemistry Research, 50, 9625- 9631.
    • SUE, K., SUZUKI, A., HAKUTA, Y., HAYASHI, H., ARAI, K., TAKEBAYASHI, Y., YODA, S. & FURUYA, T. 2009. Hydrothermal-reduction synthesis of Ni nanoparticles by superrapid heating using a micromixer. Chemistry Letters, 38, 1018-1019.
    • SUE, K., SUZUKI, M., ARAI, K., OHASHI, T., URA, H., MATSUI, K., HAKUTA, Y., HAYASHI, H., WATANABE, M. & HIAKI, T. 2006. Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chemistry, 8, 634-638.
    • TAGUCHI, M., TAKAMI, S., ADSCHIRI, T., NAKANE, T., SATO, K. & NAKA, T. 2012. Synthesis of surface-modified monoclinic ZrO 2 nanoparticles using supercritical water. CrystEngComm, 14, 2132-2138.
    • TAKAMI, S., SUGIOKA, K. I., TSUKADA, T., ADSCHIRI, T., SUGIMOTO, K., TAKENAKA, N. & SAITO, Y. 2012. Neutron radiography on tubular flow reactor for hydrothermal synthesis: In situ monitoring of mixing behavior of supercritical water and room-temperature water. Journal of Supercritical Fluids, 63, 46-51.
    • TANG, G., LIU, S., TANG, H., ZHANG, D., LI, C. & YANG, X. 2013. Templateassisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures. Ceramics International, 39, 4969-4974.
    • TANG, S. Y., BOURNE, R. A., SMITH, R. L. & POLIAKOFF, M. 2008. The 24 Principles of Green Engineering and Green Chemistry: "IMPROVEMENTS PRODUCTIVELY". Green Chemistry, 10, 268-269.
    • THOMSEN, H. S. & WEBB, J. A. W. 2009. MR Contrast Media: Organ specific. In: BAERT, A. L., BRADY, L. W., HEILMANN, H. P., KNAUTH, M., MOLLS, M. & NEIDER, C. (eds.) Contrast Media: Safety Issues and ESUR Guidelines. 2 ed.: Springer.
    • TIGHE, C. J., CABRERA, R. Q., GRUAR, R. I. & DARR, J. A. 2013. Scale up production of nanoparticles: Continuous supercritical water synthesis of Ce-Zn oxides. Industrial and Engineering Chemistry Research, 52, 5522- 5528.
    • TIGHE, C. J., GRUAR, R. I., MA, C. Y., MAHMUD, T., WANG, X. Z. & DARR, J. A. 2012. Investigation of counter-current mixing in a continuous hydrothermal flow reactor. Journal of Supercritical Fluids, 62, 165-172.
    • TSAI, Z.-T., WANG, J.-F., KUO, H.-Y., SHEN, C.-R., WANG, J.-J. & YEN, T.-C. 2010. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking. Journal of Magnetism and Magnetic Materials, 322, 208-213.
    • TSAKALAKOS, L. 2008. Nanostructures for photovoltaics. Materials Science and Engineering R: Reports, 62, 175-189.
    • TSUZUKI, T. 2009. Commercial scale production of inorganic nanoparticles. International Journal of Nanotechnology, 6, 567-578.
    • VERIANSYAH, B., KIM, J. D., MIN, B. K. & KIM, J. 2010a. Continuous synthesis of magnetite nanoparticles in supercritical methanol. Materials Letters, 64, 2197-2200.
    • VERIANSYAH, B., KIM, J. D., MIN, B. K., SHIN, Y. H., LEE, Y. W. & KIM, J. 2010b. Continuous synthesis of surface-modified zinc oxide nanoparticles in supercritical methanol. Journal of Supercritical Fluids, 52, 76-83.
    • VERIANSYAH, B., PARK, H., KIM, J. D., MIN, B. K., SHIN, Y. H., LEE, Y. W. & KIM, J. 2009. Characterization of surface-modified ceria oxide nanoparticles synthesized continuously in supercritical methanol. Journal of Supercritical Fluids, 50, 283-291.
    • VICKERMAN, J. C. & BRIGGS, D. 2001. ToF-SIMS: Surface Analysis by Mass Spectrometry, IM.
    • VIJAYALAKSHMI, U. & RAJESWARI, S. 2006. Preparation and characterization of microcrystalline hydroxyapatite using sol gel method. Trends in Biomaterials and Artificial Organs, 19, 57-62.
    • WAGEH, S., SHU-MAN, L., YOU, F. T. & XU-RONG, X. 2003. Optical properties of strongly luminescing mercaptoacetic-acid-capped ZnS nanoparticles. Journal of Luminescence, 102-103, 768-773.
    • WAKASHIMA, Y., SUZUKI, A., KAWASAKI, S. I., MATSUI, K. & HAKUTA, Y. 2007. Development of a new swirling micro mixer for continuous hydrothermal synthesis of nano-size particles. Journal of Chemical Engineering of Japan, 40, 622-629.
    • WANDELER, R. & BAIKER, A. 2000. Supercritical fluids: Opportunities in heterogeneous catalysis. CATTECH, 4, 34-50.
    • WANG, Q., TANG, S. V. Y., LESTER, E. & O'HARE, D. 2013. Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor. Nanoscale, 5, 114-117.
    • WANG, Y.-X. J. 2011. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quantitative Imaging in Medicine and Surgery, 1, 35-40.
    • WEBSTER, T. J., MASSA-SCHLUETER, E. A., SMITH, J. L. & SLAMOVICH, E. B. 2004. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 25, 2111-2121.
    • WEI, Z., XIA, T., MA, J., FENG, W., DAI, J., WANG, Q. & YAN, P. 2007. Investigation of the lattice expansion for Ni nanoparticles. Materials Characterization, 58, 1019-1024.
    • WENG, X., COCKCROFT, J. K., HYETT, G., VICKERS, M., BOLDRIN, P., TANG, C. C., THOMPSON, S. P., PARKER, J. E., KNOWLES, J. C., REHMAN, I., PARKIN, I., EVANS, J. R. G. & DARR, J. A. 2009. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. Journal of Combinatorial Chemistry, 11, 829-834.
    • WHITTERS, C. J., STRANG, R., BROWN, D., CLARKE, R. L., CURTIS, R. V., HATTON, P. V., IRELAND, A. J., LLOYD, C. H., MCCABE, J. F., NICHOLSON, J. W., SCRIMGEOUR, S. N., SETCOS, J. C., SHERRIFF, M., VAN NOORT, R., WATTS, B. C. & WOOD, D. 1999. Dental materials: 1997 literature review. Journal of Dentistry, 27, 401-435.
    • WILLARD, M. A., KURIHARA, L. K., CARPENTER, E. E., CALVIN, S. & HARRIS, V. G. 2004. Chemically prepared magnetic nanoparticles. International Materials Reviews, 49, 125-170.
    • WILLIAMS, D. B. & CARTER, C. B. 2009. Transmission electron microscopy: a textbook for materials science., Springer.
    • WOOD, V., PANZER, M. J., CHEN, J., BRADLEY, M. S., HALPERT, J. E., BAWENDI, M. C. & BULOVIĆ, V. 2009. Ink-jpetrinted quantum dot-polymer composites for full-color AC-driven displays. Advanced Materials, 21, 2151-2155.
    • XING, Y., CHAUDRY, Q., SHEN, C., KONG, K. Y., ZHAU, H. E., CHUNG, L. W., PETROS, J. A., O'REGAN, R. M., YEZHELYEV, M. V., SIMONS, J. W., WANG, M. D. & NIE, S. 2007. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature Protocols, 2, 1152-1165.
    • XU, B. & WANG, X. 2012. Solvothermal synthesis of monodisperse nanocrystals. Dalton Transactions, 41, 4719-4725.
    • XUE, B., DENG, D. W., CAO, J., LIU, F., LI, X., AKERS, W., ACHILEFU, S. & GU, Y. Q. 2012. Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Dalton Transactions, 41, 4935-4947.
    • YANG, F., XU, Z., WANG, J., ZAN, F., DONG, C. & REN, J. 2012a. Microwaveassisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells. Luminescence.
    • YANG, H., LUAN, W., CHENG, R., CHU, H. & TU, S. T. 2011. Synthesis of quantum dots via microreaction: Structure optimization for microreactor system. Journal of Nanoparticle Research, 13, 3335-3344.
    • YANG, L.-X., YIN, J.-J., WANG, L.-L., XING, G.-X., YIN, P. & LIU, Q.-W. 2012b. Hydrothermal synthesis of hierarchical hydroxyapatite: Preparation, growth mechanism and drug release property. Ceramics International, 38, 495-502.
    • YU, Y., XU, L., CHEN, J., GAO, H., WANG, S., FANG, J. & XU, S. 2012. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids and Surfaces B: Biointerfaces, 95, 247-253.
    • ZAGHIB, K., CHAREST, P., DONTIGNY, M., LABRECQUE, J. F., MAUGER, A. & JULIEN, C. A new synthetic route of LiFePO 4 nanoparticles from molten ingot. 2011 Las Vegas, NV. 23-31.
    • ZHANG, C., YANG, J., QUAN, Z., YANG, P., LI, C., HOU, Z. & LIN, J. 2009a. Hydroxyapatite nano- and microcrystals with multiform morphologies: Controllable synthesis and luminescence properties. Crystal Growth and Design, 9, 2725-2733.
    • ZHANG, J. & GE, M. 2011. Effecting factors of the emission spectral characteristics of rare-earth strontium aluminate for anti-counterfeiting application. Journal of Luminescence, 131, 1765-1769.
    • ZHANG, L., HE, R. & GU, H.-C. 2006. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 253, 2611-2617.
    • ZHANG, S., ZHANG, Y., WANG, Y., LIU, S. & DENG, Y. 2012. Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble. Physical Chemistry Chemical Physics, 14, 5132-5138.
    • ZHANG, Y. & LU, J. 2008. The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods. Nanotechnology, 19.
    • ZHANG, Z., BROWN, S., GOODALL, J. B. M., WENG, X., THOMPSON, K., GONG, K., KELLICI, S., CLARK, R. J. H., EVANS, J. R. G. & DARR, J. A. 2009b. Direct continuous hydrothermal synthesis of high surface area nanosized titania. Journal of Alloys and Compounds, 476, 451-456.
    • ZHANG, Z., GOODALL, J. B. M., BROWN, S., KARLSSON, L., CLARK, R. J. H., HUTCHISON, J. L., REHMAN, I. U. & DARR, J. A. 2010. Continuous hydrothermal synthesis of extensive 2D sodium titanate (Na 2Ti3O7) nano-sheets. Dalton Transactions, 39, 711-714.
    • ZHENG, Y.-H., CHENG, Y., BAO, F. & WANG, Y.-S. 2006. Synthesis and magnetic properties of Fe3O4 nanoparticles. Materials Research Bulletin, 41, 525- 529.
    • ZHOU, H. & LEE, J. 2011. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7, 2769-2781.
    • ZHU, L., ANG, S. & LIU, W. T. 2004. Quantum Dots as a Novel Immunofluorescent Detection System for Cryptosporidium parvum and Giardia lamblia. Applied and Environmental Microbiology, 70, 597-598.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article