Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ullah, Imran; Sharma, Raman; Biagini, Giancarlo; Horrocks, Paul (2017)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: wc_750, qx_135, qv_256, qv_771, qy_25, wc_765, R1

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Objectives: A future treatment for uncomplicated malaria will contain at least one component that exerts a rapid rate of kill. We describe here the validation and application of a simple, robust and rapid bioluminescence-based assay for the determination of the initial rate of kill in intra-erythrocytic asexual stages of Plasmodium falciparum.\ud \ud Methods: A modification to the concentration–response bioluminescence [here termed bioluminescence relative rate of kill (BRRoK)] assay, utilizing exposure to fold-IC50 concentrations (0.33× to  9×), was used to monitor the immediate cytocidal effect of 372 open-source compounds for antimalarial drug discovery available through the Medicines for Malaria Venture Malaria Box.\ud \ud Results: Antimalarial drugs that exert a rapid cytocidal effect produce a concentration-dependent loss of bioluminescence signal that correlates with available in vitro and in vivo estimates of parasite clearance time and parasite reduction ratio. Following the measurement of IC50 for the Malaria Box compounds in Dd2luc, the BRRoK assay was used to identify and rank 372 compounds for their initial cytocidal activity. Fifty-three compounds in the Malaria Box show an initial relative rate of kill greater than that of chloroquine, with 17 of these having an initial relative rate of kill greater than that of dihydroartemisinin.\ud \ud Conclusions: The BRRoK assay provides a rapid assay format for the estimation of a key pharmacodynamic property of antimalarial drug action. The simplicity and robustness of the assay suggests it would be readily scalable for high-throughput screening and a critical decision-making tool for antimalarial drug development.

Share - Bookmark

Funded by projects

  • RCUK | Tropical Infectious Diseas...

Cite this article