LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gong, Bei; Shin, Minsang; Sun, Jiali; Jung, Che-Hun; Bolt, Edward L.; van der Oost, John; Kim, Jeong-Sun (2014)
Publisher: National Academy of Sciences
Languages: English
Types: Article
Subjects: Biological Sciences
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a “Cascade” ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called “interference.” After target recogni- tion by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mecha- nism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD- nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mecha- nism for 3′ to 5′ nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3′ to 5′ trans- location of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.

Share - Bookmark

Cite this article