LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Johnson-Rollings, Ashley S.
Languages: English
Types: Doctoral thesis
Subjects: QR

Classified by OpenAIRE into

mesheuropmc: complex mixtures, fungi, bacteria
Chitin is the most abundant nitrogen-containing polymer in nature, with >1x10^10 tonnes\ud produced annually in terrestrial and marine habitats. Chitinolytic bacteria are able to\ud degrade this recalcitrant substrate through a multiplicity of chitinases. A polyphasic\ud approach was taken to studying these organisms within three diverse soil communities.\ud Fluorometric assays employing 4-methylumbelliferyl-labelled chitinooligosaccharides were\ud used to estimate basal soil chitinase activity as well as its chitinolytic potential in response\ud to a- and b-chitin amendment. A molecular approach was adopted to profile the bacterial\ud community and functional chi gene diversity within the soils. Finally, a method of exploring\ud the metaexoproteome, enabling investigation of the dominant chitin degraders at\ud a functional level, was developed and implemented. The metaexoproteome and metaproteome,\ud extracted with an existing method, were compared and used to infer the functional\ud dominance of chitinolytic phyla.\ud The basal chitinase activity in all soils was found to be low, yet chitin amendment rapidly\ud induced chitinases in all soils although intersite differences were seen. b-chitin amendment\ud induced more chitinolytic activity in Cayo Blanco (CB) compared to Sourhope (SH). The\ud Test Soil (TS), a site biannually amended with carapaces, retained higher chitinolytic\ud potential many months after chitin had been consumed.\ud Next-generation pyrosequencing enabled >50% of the potential OTUs present in the soil\ud to be recovered. The 16S rRNA gene analysis of SH revealed dominant phyla to be Proteobacteria,\ud Actinobacteria, and Acidobacteria with little change between amendments. The\ud TS was dominated by the same phyla but saw a proliferation of Actinobacteria with chitin\ud amendment. CB experienced the inverse response to the Test Soil, initially dominated by\ud Actinobacteria only for Proteobacteria to dominate with amendment. Firmicutes were also\ud prevalent with b-chitin amendment.\ud Functional chi gene analysis found Streptomyces-like GH19 chi genes to dominate in both\ud SH and CB. A rare Actinomycete Planobispora dominated chitin-amended TS. This organism\ud is usually found in extremely arid soil. It was not found in the 16S rRNA gene analysis or the metaproteome; further analysis is required to confirm its presence. Streptomyces-\ud like GH18 chi genes only dominated CB with amendment and were absent in SH.\ud A large number of OTUs were identified as uncultured organisms suggesting a large pool\ud of uncharacterized GH18 chi genes.\ud Metaproteomics is the functional analysis of complex communities at a given point in time.\ud The heterogeneity of soil, associated microbial communities, and presence of interfering\ud compounds make the extraction of protein from soil a technical challenge. Chitinases\ud are extracellular and so the metaexoproteome was targeted after development of a novel\ud method that biased extraction towards exoproteins. The protocol successfully extracted the\ud largest soil metaproteome to date. Actinobacterial chitinases were found to be functionally\ud dominant in the Test Soil, especially in response to b-chitin amendment.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Chitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Uses of chitin and chitosan . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Degradation of chitin . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4.1 Two families of chitinases . . . . . . . . . . . . . . . . . . . 5 1.1.4.2 Two mechanisms, exo- and endo- acting . . . . . . . . . . . 7 1.1.5 Multiplicity in the chitinolytic system . . . . . . . . . . . . . . . . . 8 1.1.6 Chitin as a nitrogen source . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Molecular approach to studying microbial diversity . . . . . . . . . . . . . . 11 1.3 Surveying the functionally dominant chitin degraders . . . . . . . . . . . . . 14 1.4 Hypotheses and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
    • 2 Materials and General Methods 18 2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Materials and Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Strains and Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Field sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Sourhope, Scotland, UK . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Cayo Blanco, Cuba . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Test Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Soil Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.5 Sampling methods for soil . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.5.1 Sourhope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.5.2 Cayo Blanco . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.5.3 Test Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 The preparation of the microcosms . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Calculating water content . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.2 General microcosm preparation . . . . . . . . . . . . . . . . . . . . 31 2.5.3 Degradation of carapace waste microcosm preparation . . . . . . . . 32 6 General Discussion 203 6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
    • 7 Appendix 209 7.1 Soil Texture Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.2 Supplementary metaproteomic analysis information . . . . . . . . . . . . . 210 7.2.1 Sampling 1D SDS-PAGE gel . . . . . . . . . . . . . . . . . . . . . . 210 7.2.2 Distribution of same-set hits . . . . . . . . . . . . . . . . . . . . . . . 210 7.2.3 Summary of pyrosequencing data . . . . . . . . . . . . . . . . . . . . 211 7.2.4 Calculating the coefficient of determination . . . . . . . . . . . . . . 211 7.2.5 Distribution of COGs between TS a TP and TS b TP . . . . . . . . 212 7.2.6 Calculation of Spearman's rank correlation coefficient . . . . . . . . 212 7.3 Programmes and packages used . . . . . . . . . . . . . . . . . . . . . . . . . 213 Lee, H.-J., Han, S.-I., and Whang, K.-S., (2011), Catenulispora graminis sp. nov., rhizobacterium from bamboo (Phyllostachys nigro var. henonis) rhizosphere soil, International Journal of Systematic and Evolutionary Microbiology, p. [In Press].
    • Lee, N., Amy, G., Croué, J.-P., and Buisson, H., (2004), Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM), Water Research, 38(20): 4511-4523.
    • Lee, T.-F. and McNellis, T. W., (2008), Elimination of keratin artifact bands from western blots by using low concentrations of reducing agents, Analytical Biochemistry, 382(2): 141-143.
    • Lenardon, M. D., Munro, C. A., and Gow, N. A. R., (2010), Chitin synthesis in funfal pathogenesis, Current Opinion in Microbiology, 13(4): 416-423.
    • Letunic, I. and Bork, P., (2006), Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation, Bioinformatics, 23(1): 127-128.
    • Letunic, I. and Bork, P., (2011), Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy, Nucleic Acid Research, 39(2): W475-W478.
    • Li, W. and Godzik, A., (2006), CD-HIT a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22(13): 1658-1659.
    • Lian, M., Lin, S., and Zeng, R., (2007), Chitinase gene diversity at a deep sea station of the east Pacific nodule province, Extremophiles, 11(3): 463-467.
    • Liang, T.-W., Chen, Y.-J., Yen, Y.-H., and Wang, S.-L., (2007), The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656, Process Biochemistry, 42(4): 528-534.
    • Lim, J. H., Baek, S.-H., and Lee, S.-T., (2008), Burkholderia sediminicola sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 58(3): 565-569.
    • Lin, C.-F., Lin, T.-Y., and Hao, O. J., (2000), Effects of humic substances characteristics on UF performance, Water Research, 34(4): 1097-1106.
    • Lindahl, B. D. and Finlay, R. D., (2006), Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi, New Phytologist, 169(2): 389-397.
    • Linke, T. and Doraiswamy, Sundari ad Harrison, E. H., (2007), Rat plasma proteomics: Effects of abundant protein depletion on proteomic analysis, Journal of Chromatography B, 849(1-2): 273-281.
    • Lipson, D. A. and Schmidt, S. K., (2004), Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains, Applied and Environmental Microbiology, 70(5): 2867-2879.
    • Liu, H., Sadygov, R. G., and Yates III, J. R., (2004), A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Analytical Chemistry, 76(14): 4193-4201.
    • Liu, Z., Lozupone, C., Hamady, M., Bishman, F. D., and Knight, R., (2007), Short pyrosequencing reads suffice for accurate microbial community analysis, Nucleic Acids Research, 35(18): e120.
    • Lo, I., Denef, V. J., VerBerkmoes, N. C., Shah, M. B., Goltsman, D., DiBartolo, G., Tyson, G. W., Allen, E. E., Ram, R. J., Detter, J. C., Richardson, P., Thelen, M. P., Hettich, R. L., and Banfield, J. F., (2007), Strainresolved community proteomics reveals recombining genomes of acidophilic bacteria, Nature, 446(7135): 537-541.
    • Lombard, N., Prestat, E., van Elsas, J. D., and Simonet, P., (2011), Soil-specific limitations for access and analysis of soil microbial communities by metagenomics, FEMS Microbiology Ecology, 78(1): 31-49.
    • Ludovic, V., Groleau, M.-C., Dekimpe, V., and Déziel, E., (2007), Burkholderia diversity and versatility: An investory of the extracellular products, Journal of Microbiology and Biotechnology, 17(9): 1407-1429.
    • Lysak, L. V., Lapygina, E. V., Konova, I. A., and Zvyagintsev, D. G., (2010), Quantity and taxonomic composition of ultramicrobacteria in soils, Microbiology, 79(3): 408-412.
    • Madigan, M. M., Martinko, J., and Parker, J. (eds.) (2003), Brock Biology of Microorganisms, Benjamin Cummings, 10th edition, ISBN 0130662712.
    • Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., VerBerkmoes, N. C., Hettich, R. L., and Gordon, J. I., (2009), Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla, Proceedings of the National Academy of Sciences of the United States of America, 106(14): 5859-5864.
    • Maidak, B., Cole, J., Lilburn, T., Parker, Jr, C., Saxman, P., Farris, R., Garrity, G., Olsen, G., Schmidt, T., and Tiedje, J., (2001), The RDP-II (Ribosomal Database Project), Nucleic Acids Research, 29(1): 173-174.
    • Malcolm, R. L., Thurman, E. M., and Aiken, G. R. (1977), The concentration and fractionation of trace organic solutes from natural and polluted waters using XAD-8, a methylmethacrylate resin, in D. D. Hemphill (ed.) Trace Substances in Environmental Health-XI, volume 11, pp. 307-314, University of Missouri, CO.
    • Manteca, A. and Sanchez, J., (2009), Streptomyces development in colonies and soils, Applied and Environmental Microbiology, 75(9): 2920-2924.
    • Mänttäri, M., Puro, L., Nuortila-Jokinen, J., and Nyström, (2000), Fouling effects of polysaccharides and humic acid in nanofiltration, Journal of Membrane Science, 165(1): 1-17.
    • Mario, F. D., Rapanà, P., and Galli, T. E., (2008), Chitin and chitosan from basidiomycetes, International Journal of Biological Macromolecules, 43(1): 8-12.
    • Maron, P.-A., Ranjard, L., Mougel, C., and Lemanceau, P., (2007), Metaproteomics: A new approach for studying functional microbial ecology, Microbial Ecology, 53(3): 486-493.
    • Martin, P. A. W. and Travers, R. S., (1989), Worldwide abundance and distribution of Bacillus thuringiensis isolates, Applied and Environmental Microbiology, 55(10): 2437- 2442.
    • Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., and Catroux, G., (2001), DNA extraction from soils: Old bias for new microbial diversity analysis methods, Applied and Environmental Microbiology, 67(5): 2354-2359.
    • Masciandaro, G., Macci, C., Doni, S., Maserti, B. E., Leo, A. C.-B., Ceccanti, B., and Wellington, E., (2008), Comparison of extraction methods for recovery of extracellular B-glucosidase in two different forest soils, Soil Biology and Biochemistry, 40(9): 2156-2161.
    • Matthiasson, E., (1983), The role of macromolecular absorption in fouling of ultrafiltration membranes, Journal of Membrane Science, 16: 23-36.
    • van der Meer, J., Werlen, C., and Siegrist, H. (1999), A mixed culture isolate koll13: Characterization of the bacterial composition of a nitrogen-removing biofilm from a trickling filter at Kollikon, Switzerland. Unpublished. [NCBI: http://goo.gl/f9nl5] [RDP: http://goo.gl/VDaJo].
    • Mehmood, M. A., Xiao, X., Hafeez, F. T., Gai, Y., and Wang, F., (2011), Molecular characterization of the modular chitin binding protein Cbp50 from Bacillus thuringiensis serovar konkukian, Antonie van Leeuwenhoek, 100(3): 445-453.
    • Merzendorfer, H., (2003), Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases, Journal of Experimental Biology, 206(24): 4393-4412.
    • Metcalfe, A. C., (2002), Molecular Analysis of a Bacterial Chitinolytic Community in an Upland Pasture. PhD Thesis. Department of Biological Sciences, University of Warwick, UK.
    • Metcalfe, A. C., Krsek, M., Gooday, G. W., Prosser, J. I., and H., W. E. M., (2002), Molecular analysis of a bacterial chitinolytic community in an upland pasture, Applied and Environmental Microbiology, 68(10): 5042-5050.
    • Metcalfe, A. C., Williamson, N., Krsek, M., and Wellington, E. M. H., (2003), Molecular diversity within chitinolytic actinomycetes determined by in situ analysis, Actinomycetologica, 17(1): 18-22.
    • Meyer, J., (1976), Nocardiopsis, a new genus of the order Actinomycetales, International Journal of Systematic and Evolutionary Microbiology, 26(4): 487-493.
    • Micó, C., Recatalá, L., Peris, M., and Sánchez, J., (2006), Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis, Chemosphere, 65(5): 863-872.
    • Middelberg, A. P., (1995), Process-scale distruption of microorganisms, Biotechnology Advances, 13(3): 491-551.
    • Miller, M., Palojärvi, A., Rangger, A., Reeslev, M., and Kjøller, A., (1998), The use of fluorogenic substrates to measure fungal presence and activity in soil, Applied and Environmental Microbiology, 64(2): 613-617.
    • Millipore Corporation (2002a), Biomax http://goo.gl/ugRI8 [www.millipore.com].
    • Miyashita, K., Fujii, T., and Sawada, Y., (1991), Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66, Journal of General Microbiology, 137(9): 2065-2072.
    • Molano, J., Durán, A., and Cabib, E., (1977), A rapid and sensitive assay for chitinase using tritiated chitin, Analytical Biochemistry, 83(2): 648-656.
    • Monciardini, P., Sosio, M., Cavaletti, L., Chiocchini, C., and Donadio, S., (2002), New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes, FEMS Microbiology Ecology, 42(3): 419-429.
    • Montgomery, M. T. and Kirchman, D. L., (1993), Role of chitin-binding proteins in the specific attachment of the marine bacterium Vibrio harveyi to chitin, Applied and Environmental Microbiology, 59(2): 373-379.
    • Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B., Thomas, B. C., Wilmes, P., Smith, R. L., Nordstrom, D. K., McCleskey, R. B., Shah, M. B., VerBerkmoes, N. C., Hettich, R. L., and Banfield, J. F., (2010), Ecological distribution and population physiology defined by proteomics in a natural microbial community, Molecular Systems Biology, 6(374).
    • Murase, A., Yoneda, M., Ueno, R., and Yonebayashi, K., (2003), Isolation of extracellular protein from greenhouse soil, Soil Biology and Biochemistry, 35(5): 733- 736.
    • Murray, R. G. E. and Schleifer, K. H., (1994), Taxonomic notes: A proposal for recording the properties of putative taxa of procaryotes, International Journal of Systematic and Evolutionary Microbiology, 44(1): 174-176.
    • Muzzarelli, R. A. A. (2011), Chitin nanostructures in living organisms, in N. S. Gupta (ed.) Chitin, volume 34, chapter 1, pp. 1-34, Springer, Netherlands, ISBN 978-90-481- 9684-5.
    • Nacke, K., Thürmer, A., Wollher, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., and Daniel, R., (2011), Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils, PLoS ONE, 6(2): e17 000.
    • Nannipieri, P. (2006), Role of Stabilised Enzymes in Microbial Ecology and Enzyme Extraction from Soil with Potential Applications in Soil Proteomics, volume 8, pp. 75- 94, Springer Berlin Heidelberg.
    • Nannipieri, P., Giagnoni, L., Landi, L., and Renella, G., (2011), Role of phosphatase enzymes in soil, 100(Part 2): 215-243.
    • Nawani, N. N., Thakkar, A. P., Patil, N. N., and Kapadnis, B. P. (2004), Diversity of chitinolytic systems of bacteria, in S. Khanna (ed.) Biotechnological approaches for sustainable development, International Conference on Bioconvergence, pp. 133-141, Allied Publishers.
    • Nickel, W., (2010), Pathways of unconventional protein secretion, Current Opinions in Biotechnology, 21(5): 621-626.
    • Nikaido, H. and Nakae, T. (1980), The outer membrane of Gram-negative bacteria, in J. F. Wilkinson (ed.) Advantages in microbial physiology, pp. 164-240, Academic Press Inc.
    • Nilsson, T., Mann, M., Aebersold, R., Yates III, J. R., Bairoch, A., and Bergerson, J. J. M., (2010), Mass spectrometry in high-throughput proteomics: ready for the big time, Nature Methods, 7(9): 681-685.
    • No, H. K. and Meyers, S. P., (1989), Crawfish chitson as a coagulant in recovery of organic compounds from seafood processing streams, Journal of Agricultural and Food Chemistry, 37(3): 580-583.
    • No, H. K., Meyers, S. P., and Lee, K. S., (1989), Isolation and characterization of chitin from crawfish shell waste, Journal of Agricultural and Food Chemistry, 37(3): 575-579.
    • Nunan, N., Wu, K., Young, I. M., Crawford, J. W., and Ritz, K., (2003), Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil, FEMS Microbiology Ecology, 44(2): 203-215.
    • Nyström, M., Ruohomäki, K., and Kaipia, L., (1996), Humic acid as a fouling agent in filtration, Desalination, 106(1-3): 79-87.
    • Oakley, B. B., Carbonero, F., Dowd, S. E., Hawkins, R. J., and Purdy, K. J., (2011), Contrasting patterns of niche partitioning between two anaerobic terminal oxidizers of organic matter, The ISME Journal, 6(5): 905-914.
    • Ochs, D., (1983), Protein contaminants of sodium dodecyl sulfate-polyacrylamide gels, Analytical Biochemistry, 135(2): 470-474.
    • Odén, S., (1919), Die huminsäuren, Kolloidchemische Beihefte, 11: 34-36.
    • Ogunseitan, O. (2006), Nucleic Acids and Proteins in Soil, volume 8 of Soil Biology, chapter 5, Soil Proteomics: Extraction and Analysis of Proteins from Soils, pp. 95-115, Springer Berlin Heidelberg, ISBN 978-3-540-29449-8.
    • Ogunseitan, O. A., (1993), Direct extraction of proteins from environmental samples, Journal of Microbiological Methods, 17(4): 273-281.
    • Oh, K., Kim, Y., Nguyen, V., Jung, W., and Park, R., (2007), Demineralization of crab shell waste by Pseudomonas aeruginosa F722, Process Biochemistry, 42(7): 1069- 1074.
    • Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M., and Watanabe, T., (1996), A modular Family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037, Journal of Bacteriology, 178(17): 5065-5070.
    • Okamura, K., Kanbe, T., and Hiraishi, A., (2009), Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water, International Journal of Systematic and Evolutionary Microbiology, 59(3): 531-535.
    • Omura, S., Takahashi, Y., Iwai, Y., and Tanaka, H., (1982), Kitasatoporia, a new genus of the order Actinomycetales, The Journal of Antibiotics, 35(8): 1013-1019.
    • OpenStreetMap (2011), OpenStreetMap ©, A Map of Hicacos Peninsula and the island of Cayo Blanco. Used under the Attribution-ShareAlike 2.0 Generic licence (CC BY-SA 2.0) [http://creativecommons.org/licenses/by-sa/2.0/].
    • Ordnance Survey (2009), The Cheviot Hills, OL16, 1:25000. OS Explorer map, Ordnance Survey, ISBN 9780319240878.
    • Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y., and Tsujibo, H., (2005), Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. Strain O-7, Applied and Environmental Microbiology, 71(4): 1811-1815.
    • Ostle, N., Ineson, P., Benham, D., and Sleep, D., (2000), Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system, Rapid Communications in Mass Spectrometry, 14(15): 1345-1350.
    • Overdijk, B., Van Steijn, G. J., and Odds, F. C., (1999), Distribution of chitinase in guinea pig tissues and increases in levels of this enzyme after systemic infection with Aspergillus fumigatus, Microbiology, 145(Part 1): 259-269.
    • Park, Y.-H., Yoon, J.-H., Shin, Y. K., Suzuki, K.-I., Kudo, T., Seino, A., Kim, H.-J., Lee, J.-S., and Lee, S. T., (1999), Classification of 'Nocardioides fulvus' IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov., International Journal of Systematic and Evolutionary Microbiology, 49(Part 2): 743-752.
    • Passarinho, P. A. and de Vries, S. C., (2002), Arabidopsis chitinases: a genomic survey, The Arabidopsis Book, p. e0023.
    • Paul-Pletzer, K. and Parness, J., (2001), Elimination of keratin contaminant from 2-Mercaptoethanol, Analytical Biochemistry, 289(1): 98-99.
    • Peesan, M., Rujiravanit, R., and Supaphol, P., (2003), Characterisation of betachitin/poly (vinyl alcohol) blend films, Polymer Testing, 22(4): 381-387.
    • Pei, A. Y., Oberdorf, W. E., Nossa, C. W., Agarwal, A., Chokshi, P., Gerz, E. A., Jin, Z., Lee, P., Yang, L., Poles, M., Brown, S. M., Sotero, S., DeSantis, T., Brodie, E., Nelson, K., and Pei, S., (2010), Diversity of 16S rRNA genes within individual prokaryotic genomes, Applied and Environmental Microbiology, 76(12): 3886- 3897.
    • Pelegine, D. H. G. and Gasparetto, C. A., (2005), Whey proteins solubility as function of temperature and pH, Lebensmittelwissenschaft und Technologie (LWT- Food Science and Technology), 38(1): 77-80.
    • Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A., (2010), A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland, The ISME Journal, 4(12): 1591-1602.
    • Pinottia, A., Bevilacquaa, A., and Zaritzky, N., (1997), Optimization of the flocculation stage in a model system of a food emulsion waste using chitosan as polyelectrolyte, Journal of Food Engineering, 32(1): 69-81.
    • Plowman, J. E., (2007), The proteomics of keratin proteins, Journal of Chromatography B, 849(1-2): 181-189.
    • Polz, M. F. and Cavanaugh, C. M., (1998), Bias in template-to-product ratios in multitemplate PCR, Applied and Environmental Microbiology, 64(10): 3724-3730.
    • Pontiroli, A., Travis, E. R., Sweeny, F. P., Porter, D., Gaze, W. H., Mason, S., Hibberd, V., Holden, J., Courtenay, O., and Wellington, E. M. H., (2011), Pathogen quantitation in complex matrices: A multi-operator comparison of DNA extraction methods with a novel assessment of PCR inhibition, PLoS ONE, 6(3): e17 916.
    • Prauser, H., (1976), Nocardioides, a new genus of the order Actinomycetales, International Journal of Systematic and Evolutionary Microbiology, 26(1): 58-65.
    • Price, M. N., Dehal, P. S., and Arkin, A. P., (2010), FastTree 2 - approximately maximum-likelihood trees for large alignments, PLoS ONE, 5(3): e9490.
    • Prosser, J. I., (2010), Replicate or lie, Environmental Microbiology, 12(7): 1806-1810.
    • Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., and Glöckner, F. O., (2007), SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acid Research, 35(21): 7188-7196.
    • Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., and Li, G., (2012), Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms, Water Research, 46(5): 1490-1500.
    • Rahman, M. T., Crombie, A., Chen, Y., Stralis-Pavese, N., Bodrossy, L., Mier, P., McNamara, N. P., and Coil, M. J., (2011), Environmental disruption and abundance of the faculative methanotroph Methylocella, The ISME Journal, 5(6): 1061- 1066.
    • Ram, R. J., VerBerkmoes, N. C., Thelen, M. P., Tyson, G., Baker, B. J., Blake II, R. C., Shah, M., Hettich, R. L., and Banfield, J. F., (2005), Community proteomics of a natural biofilm, Science, 308(5730): 1915-1920.
    • Ramette, A. and Tiedje, J. M., (2007), Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution, Microbial Ecology, 53(2): 197-207.
    • Rappé, M. S. and Giovannoni, S. J., (2003), The uncultured microbial majority, Annual Review of Microbiology, 57: 369-94.
    • Raumps, L. S., Nunan, N., and Chenu, C., (2011), Microbial biogeography at the soil pore scale, Soil Biology and Biochemistry, 43(2): 280-286.
    • Ravi Kuma, M. N. V., (2000), A review of chitin and chitosan applications, Reactive and Fuctional Polymers, 46(1): 1-27.
    • Reddy, A. V. R. and Patel, H. R., (2008), Chemically treated polyethersulfone/polyacrylonitrile blend ultrafiltration membranes for better fouling resistance, Desalination, 221(1-3): 318-323.
    • Reeder, J. and Knight, R., (2009), The 'rare biosphere': A reality check, Nature Methods, 6(9): 636-637.
    • Rhazi, M., Desbrières, J., Tolaimate, A., Alagui, A., and Vottero, P., (2000), Investigation of different natural sources of chitin: influence of the source and deactylation process on the physicochemical characteristics of chitosan, Polymer International, 49(4): 337-344.
    • Richardson, D. J. and Watmough, N. J., (1999), Inorganic nitrogen metabolism in bacteria, Current Opinion in Chemical Biology, 3(2): 207-219.
    • Riesenfeld, C. S., Schloss, P. D., and Handelsman, J., (2004), Metagenomics: Genomic analysis of microbial communities, Annual Review of Genetics, 38: 525-552.
    • Robertus, J. D. and Monzingo, A. F. (1999), The structure and action of chitinases, in P. Jolles and R. A. A. Muzzarelli (eds.) Chitin and Chitinases, volume 87 of Experientia Supplementum, pp. 125-135, Birkhäuser BioSciences, Basel, Switzerland.
    • Rosenberger, F., Howard, S. B., Sowers, J. W., and Nyce, T. A., (1993), Temperature dependence of protein solubility - determination and application to crystallization in X-ray capillaries, Journal of Crystal Growth, 129(1-2): 1-12.
    • Sagheer, F. A. A., Al-Sughayer, M. A., Muslim, S., and Elsabee, M. Z., (2009), Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf, Carbohydrate Polymers, 77(2): 410-419.
    • Saito, A., Fujii, T., Yoneyama, T., Redenbach, M., Ohno, H., Watanabe, T., and Miyashita, K., (1999), High-multiplicity of chitinase genes in streptomyces coelicolor a3(2), Bioscience, Biotechnology, and Biochemistry, 63(4): 710-718.
    • Saito, A., Ishizaka, M., Francisco Jr, P. B., Fujii, T., and Miyashita, K., (2000), Transcriptional co-regulation of five chitinase genes scattered on the Streptomyces coelicolor A3(2) chromosome, Microbiology, 146(11): 2937-2946.
    • Saito, A., Miyashita, K., Biukovic, G., and Schrempf, H., (2001), Characteristics of a Streptomyces coelicolor A3(2) extracellular protein targeting chitin and chitosan, Applied and Environmental Microbiology, 67(3): 1268-1273.
    • Salehi, E. and Madaeni, S. S., (2010), Adsorption of humic acid onto ultrafiltration membranes in the presence of protein and metal ions, Desalination, 263(1-3): 139-145.
    • Salvagio Manta, D., Angelone, M., Bellanca, A., Neri, R., and Sprovieri, M., (2002), Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy, Science of The Total Environment, 300(1-2): 229-243.
    • Sande, E. and Young, D. R., (1992), Effect of sodium chloride on growth and nitrogenase activity in seedlings of Myrica cerifera L., New Phytologist, 120(3): 345-350.
    • Sarathchandra, S. U., Watson, R. N., Cox, N. R., di Menna, M. E., Brown, J. A., Burch, G., and Neville, F. J., (1996), Effects of chitin amendment of soil on microorganisms, nematodes, and growth of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.), Biology and Fertility of Soils, 22(3): 221-226.
    • Sartorius Stedim Biotech (2010), Microfilters Product Overview. Publication No. SM-1503-e10078, Order No. 85030-515-59, Sartorius Stedim Biotech GmbH, AugustSpindler-Strasse 11, 37079 Goettingen, Germany.
    • Schaep, J. and Vandecasteele, C., (2001), Evaluating the charge of nanofiltration membranes, Journal of Membrane Science, 188(1): 129-136.
    • Scheewind, O. and Mossoakas, D. M., (2012), Protein secretion and surface display in Gram-positive bacteria, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 367(1592): 1123-1139.
    • Schimel, J. P. and Bennett, J., (2004), Nitrogen mineralization: challenges of a changing paradigm, Ecology, 85(3): 591-602.
    • Schmerr, M. J. and Alpert, A. J. (2000), Method and Kit for Extracting Prion Protein, United States Patent Patent No.: 6,150,172; Application No.: 09/420,850, The United States of America as reprsented by the Secretary of Agriculture.
    • Schnellmann, J., Zeltins, A., Blaak, H., and Schrempf, H., (1994), The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline ↵ -chitin of fungi and other organisms, Molecular Microbiology, 13(5): 807-819.
    • Schrempf, H., (2001), Recognition and degradation of chitin by streptomycetes, Antonie van Leeuwenhoek, 79(3-4): 285-289.
    • Schwintzer, C. R., (1983), Nonsymbiotic and symbiotic nitrogen fixation in a weakly minerotrophic peatland, American Journal of Botany, 70(7): 1071-1078.
    • Seidl, V., (2008), Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions, Fungal Biology Reviews, 22(1): 36-42.
    • Seidl, V., Huemer, B., Seiboth, B., and Kubicek, C. P., (2005), A complete survey of Trichoderma chitinases reveals three distinct subgroups of Family 18 chitinases, FEBS Journal, 272(22): 5923-5939.
    • Shahidi, F., Arachchi, J. K. V., and Jeon, Y.-J., (1999), Food applications of chitin and chitosans, Trends in Food Science and Technology, 10(2): 37-51.
    • Shalumon, K. T., Binulal, N. S., Selvamurugan, N., Nair, S. V., Menon, D., Furuike, T., Tamura, H., and Jayakumar, R., (2009), Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications, Carbohydrate Polymers, 77(4): 863-869.
    • Shapiro, S. Z., (1987), Elimination of the detection of an artefactual 65 kDa keratin band from immunoblots, Journal of Immunological Methods, 102(1): 143-146.
    • Sharma, S., (2003), Structural and functional characterization of bacterial diversity in the rhizospheres of three grain legumes. PhD thesis. Fakultät für Biologie, LudwigMaximilians-Universität Muenchen, Germany.
    • Shen, Z. and Jacobs-Lorena, M., (1998), A Type I peritrophic matrix protein from the malaria vecause Anopheles gambiae binds to chitin, The Journal of Biological Chemistry, 273(28): 17 665-17 670.
    • Shimosaka, M., Fukumori, Y., Tajkuji, N., Zhang, X.-Y., Kodaira, R., Nogawa, M., and Okazaki, M., (2001), The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to Families 18 and 19 of the glycoyl hydrolases, Journal of Bioscience and Bioengineering, 91(1): 103-105.
    • Shinshi, H., Neuhaus, J.-M., Ryals, J., and Meins, F., (1990), Structure of a tobacco endochitinase gene evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain, Plant Molecular Biology, 14(3): 357-368.
    • Shirley, J., Mandale, S., and Williams, P. M., (2011), Amino acid rejection behaviour as a function of concentration, Advances in Colloid and Interface Science, 164(1-2): 118- 125.
    • Siemieniewicz, K. W. and Schrempf, H., (2007), Concerted responses between the chitin-binding protein secreting Streptomyces olivaceoviridis and Aspergillus proliferans, Microbiology, 153(2): 593-600.
    • Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J., (2006), Microbial diversity in the deep sea and the underexplored 'rare biosphere', Proceedings of the National Academy of Sciences of the United States of America, 103(32): 12 115-12 120.
    • Sohn, A. H., Probert, W. S., Glaser, C. A., Gupta, N., Bollen, A. W., Wong, J. D., Grace, E. M., and McDonald, W. C., (2003), Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp., Emerging Infection Diseases, 9(4): 485-488.
    • Somashekar, D. and Joseph, R., (1996), Chitosanases - properties and applications: A review, Bioresource Technology, 55(1): 35-45.
    • Sowell, S. M., Wilhelm, L. J., Norbeck, A. D., Lipton, M. S., Nicora, C. D., Barofsky, D. F., Carlson, C. A., Smith, R. D., and Giovanonni, S. J., (2008), Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea, The ISME Journal, 3(1): 93-105.
    • Stokke, R., Roalkvam, I., Lanzen, A., Haflidason, H., and Steen, I. H., (2012), Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments, Environmental Microbiology, 14(5): 1333-1346.
    • Suárez-Moreno, Z. R., Caballero-Mellado, J., Coutinho, B. G., MendonçaPreviato, L., James, E. K., and Venturi, V., (2012), Common features of enironmentally and potentially benefitial plant-associated Burkholderia, Microbial Ecology, 63(2): 249-266.
    • Suflita, J. M. and Bollag, J.-M., (1980), Oxidative couple activty in soil extracts, Soil Biology and Biochemistry, 12(1): 177-183.
    • Suzuki, D., Takahashi, M., Abe, M., Sarukawa, Tamura, H., Tokura, S., Kurahashi, Y., and Nagano, A., (2008), Comparison of various mixtures of chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes, Journal of Materials Science: Material in Medicine, 19(3): 1307-1315.
    • Suzuki, K., Suzuki, M., Taiyoji, M., Nikaidou, N., and Watanabe, T., (1998), Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170, Bioscience, Biotechnology, and Biochemistry, 62(1): 128-135.
    • Suzuki, K., Taiyoji, M., Sugawara, N., Nikaidou, N., Henrissat, B., and Watanabe, T., (1999), The third chitinase gene (chiC ) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases, Biochemistry Journal, 343(Part 3): 587-596.
    • Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kirytin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Wolf, Y. I., Yin, J. J., and Natale, D. A., (2003), The COG database: An updated version includes eukaryotes, BMC Bioinformatics, 4(41).
    • Tatusov, R. L., Koonin, E. V., and Lipman, D. L., (1997), A genomic perspective on protein families, Science, 278(5338): 631-6337.
    • Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusov, T. A., Shankavarak, U. T., Rao, B. S., Kirytin, B., Galperin, M. Y., Fedorova, N. D., and Koonin, E. V., (2001), The COG database: New developments in phylogenetic classification of proteins from complete genomes, Nucleic Acids Research, 29(1): 22-28.
    • The C. elegans Sequencing Consortium, (1998), Genome sequence of the nematode C. elegans: A platform for investigating biology, Science, 282(5396): 2012-2018.
    • Thiemann, J. E. and Beretta, (1968), A new genus of Actinoplanaceae: Planobispora, gen. nov., Archiv für Mikrobiologie, 62(2): 157-166.
    • Thompson, M. R., Chourey, K., Froelich, J. M., Erickson, B. K., VerBerkmoes, N. C., and Hettich, R. L., (2008), Experimental approach for deep proteome measurements from small-scale microbial biomass samples, Analytical Chemistry, 80(24): 9517-9525.
    • Thorsen, T., (2004), Concentration polarisation by natural organic matter (NOM) in NF and UF, Journal of Membrane Science, 233(1-2): 79-91.
    • Thurman, E. M. and Malcolm, R. L., (1981), Preparative isolation of aquatic humic substances, Environmental Science and Technology, 15(4): 463-466.
    • Tolaimate, A., Desbrières, J., Rhazi, M., Alagui, A., Vincendon, M., and Vottero, P., (2000), On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin, Polymer, 41(7): 2463-2469.
    • Torsvik, V., Goksøyr, J., and Daae, F. L., (1990), High diversity in DNA of soil bacteria, Applied and Environmental Microbiology, 56(3): 782-787.
    • Townes, J. M., (2010), Reactive arthritis after enteric infections in the United States: The problem of definition, Clinical Infectious Diseases, 50(2): 247-254.
    • Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P., and Rubin, E. M., (2005), Comparative metagenomics of microbial communities, Science, 308(5721): 554-557.
    • Tsujibo, H., Hatano, N., Okamoto, T., Endo, H., Miyamoto, K., and Inamori, Y., (1999), Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system, FEMS Microbiology Letters, 181(1): 83-90.
    • Tsujibo, H., Kubota, T., Yamamoto, M., Miyamoto, K., and Inamori, Y., (2003), Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, Applied and Environmental Microbiology, 69(2): 894-900.
    • Ueda, M., Okada, A., Kawaguchi, T., and Arai, M., (1998), Cloning and sequence analysis of a chitinase gene (pCA8 ORF) from Aeromonas sp. no. 10S-24, Journal of Fermentation and Bioengineering, 86(6): 600-604.
    • Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., and Matson, P. A., (1987), Biological invasion by Myrica faya alters ecosystems development in Hawaii, Science, 238(4828): 802-804.
    • Ghauharali-van der Vlugt, K. B., P., A., Groener, J. E. M., Boot, R. G., and Aerts, J. M. F. G., (2009), Detection of chitinase activity by 2-aminobenzoic acid labeling of chito-oligosaccharides, Analytical Biochemistry, 384(1): 191-193.
    • Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Nalin, R., and Philippot, L., (2009), Terragenome a consortium for the sequencing of a soil metagenome, Nature Reviews Microbiology, 7(4): 252.
    • Vos, M., Quince, C., Pijl, A. S., de Hollander, M., and Kowalchuk, G. A., (2012), A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity, PLoS ONE, 7(2): e30 600.
    • Wang, S.-L., Lin, H.-T., Liang, T.-W., Chen, Y.-J., Yen, Y.-H., and Guo, S.-P., (2008a), Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials, Bioresource Technology, 99(10): 4386-4393.
    • Wang, S.-L., Yang, C.-W., Liang, T.-W., Peng, J.-H., and Wang, C.-L., (2009a), Degradation of chitin and production of bioactive materials by bioconversion of squid pens, Carbohydrate Polymers, 78(2): 205-212.
    • Wang, W., Ma, F., Yue, X., and Wang, A., (2008b), Purification and characterization of compound bioflocculant, In: 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 1127-1130.
    • Wu, G. D., Lewis, J. D., Hoffmann, C., Chen, Y.-Y., Knight, R., Bittinger, K., Hwang, J., Chen, J., Berkowsky, R., Nessel, L., Li, H., and Bushman, F. D., (2010), Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags, BMC Microbiology, 10(206).
    • Wu, L., Wang, H., Zhang, Z., Lin, R., Zhang, Z., and Lin, W., (2011), Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil, PLoS ONE, 6(5): e20 611.
    • Yuan, W. and Zydney, A. L., (1999), Humic acid fouling during microfiltration, Journal of Membrane Science, 157(1): 1-12.
    • Yusof, N. L. B. M., Lim, L. Y., and Khor, E., (2001), Preparation and characterization of chitin beads as a wound dressing precursor, Journal of Biomedical Materials and Research, 54(1): 59-58.
    • Zeilstra-Ryalls, J., Fayet, O., and Georgopoulos, C., (1991), The universally conserved GroE (Hsp60) chaperonins, Annual Review of Microbiology, 45: 301-325.
    • Zemmouri, H., Drouiche, M., Sayeh, A., Lounici, H., and Mameri, N., (2012), Coagulation flocculation test of Keddara's Water Dam using chitosan and sulfate aluminium, Procedia Engineering, 33: 254-260.
    • Zhang, Z., Wang, Y., and Ruan, J., (1997), A proposal to revive the genus Kitasatospora (Omura, Takashi, Iwai, and Tanaka 1982), International Journal of Systematic and Evolutionary Microbiology, 47(4): 1048-1054.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article