LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pinski, Sebastian; Schirmacher, W.; Roemer, Rudolf A. (2012)
Publisher: Institute of Physics Publishing Ltd.
Languages: English
Types: Article
Subjects: QC
We consider the localisation properties of a lattice of coupled masses and springs with random mass and spring constant values. We establish the full phase diagrams of the system for pure mass and pure spring disorder. The phase diagrams exhibit regions of stable as well as unstable wave modes. The latter are of interest for the instantaneous-normal-mode spectra of liquids and the nascent field of acoustic metamaterials. We show the existence of delocalisation-localisation transitions throughout the phase diagram and establish, by high-precision numerical studies, that the universality of these transitions is of the Anderson type.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, United Kingdom∗ 2Institut fu¨r Physik, Universita¨t Mainz, D-55099 Mainz, Germany and Physik-Department E13, Technische Universita¨t Mu¨nchen, D-85747 Garching, Germany (Dated: Revision : 1.42, compiled Wednesday 24th August, 2011, 01:51) ∗ Corresponding author:
    • [1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    • [2] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
    • [3] J. Billy et al., Nature 453, 891 (2008); G. Roati et al., Nature 453, 895 (2008); J. Chab´e et al., Phys. Rev. Lett. 101, 255702 (2008); G. Lemari´e et al., Phys. Rev. A 80, 043626 (2009); G. Lemari´e et al., Phys. Rev. Lett. 105, 090601 (2010).
    • [4] M. Morgenstern et al., Phys. Rev. Lett. 89, 136806 (2002), ArXiv: cond-mat/0202239; K. Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008), arXiv: condmat/0807.3784; A. Richardella et al., Science 327, 665 (2010).
    • [5] D. S. Wiersma, P. Bartolini, A. Lagendjik, and R. Righini, Nature 390, 671 (1997); M. St¨orzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev. Lett. 96, 063904 (2006).
    • [6] J. H. Page, H. Hu, S. Skipetrov, and B. A. van Tiggelen, Journal of Physics: Conference Series 92, 012129 (2007); B. A. van Tiggelen and E. Kogan, Phys. Rev. A 49, 708 (1994).
    • [7] H. Hu et al., Nature Physics 4, 945 (2008); S. Faez et al., Phys. Rev. Lett. 103, 155703 (2009).
    • [8] S. John, H. Sompolinsky and M. J. Stephens, Phys. Rev. B 27, 5529 (1983).
    • [9] E. Akkermans and R. Maynard, Phys. Rev. B 32, 7850 (1985); J. E. Graebner, B. Golding, L. C. Allen, Phys. Rev. B 34, 5696 (1986)
    • [10] W. Schirmacher, M. Wagener, Sol. State Comm. 86, 597 (1993).
    • [11] W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett. 81, 136 (1998).
    • [12] J. W. Kantelhardt, A. Bunde, and L. Schweitzer, Phys. Rev. Lett. 81, 4907 (1998); J. W. Kantelhardt, S. Russ, and A. Bunde, Phys. Rev. B 63, (2001)
    • [13] J. Ludlam, T. Stadelmann, S. Taraskin, and S. Elliott, Journal of Non-Crystalline Solids 293, 676 (2001); J. Ludlam, S. Taraskin, and S. Elliott, Phys. Rev. B 67, 132203 (2003); J. J. Ludlam, S. N. Taraskin, S. R. Elliot, and D. A. Drabold, J. Phys.: Condens. Matter 17, L321 (2005); S. Russ, Phys. Rev. B 66, (2002); H. Shima, S. Nishino, and T. Nakayama, Journal of Physics: Conference Series 92, 012156 (2007).
    • [14] T. Keyes, J. Phys. Chem. A 101, 2921 (1997); S. D. Bembenek, B. Laird, J. Chem. Phys. 104, 5199 (1995); S. Ciliberti and T. S. Grigera, Phys. Rev. E 70, 061502 (2004); S. Ciliberti et al. Phys. Rev. B 71, 153104 (2005).
    • [15] V. G. Veselago, Soviet Physics Uspekhi 10, 509 (1968); J. B. Pendry, Contemporary Physics 45, 191 (2004).
    • [16] Z. Liu et al., Science 289, 1734 (2000); M. Hirsekorn, Appl. Phys. Lett. 84, 3364 (2004); C. Chan, J. Li, and K. Fung, SCIENCE A 7, 24 (2006); N. Fang et al., Nature Materials 5, 452 (2006); Y. Ding, Z. Liu, C. Qiu, and J. Shi, Phys. Rev. Lett. 99; (2007). D. W. Wright and R. S. Cobbold, Ultrasound 17, 68 (2009); Z. He et al., Europhys. Lett. 91, (2010).
    • [17] B. Bulka, M. Schreiber, and B. Kramer, Z. Phys. B 66, 21 (1987).
    • [18] S. Pinski, W. Schirmacher, T. Whall, and R. Ro¨mer, preprint.
    • [19] H. Grussbach and M. Schreiber, Phys. Rev. B 51, 663 (1995).
    • [20] C. M. Soukoulis and E. N. Economou, Phys. Rev. B 24, 5698 (1981); A. Eilmes, R. A. Ro¨mer, and M. Schreiber, Eur. Phys. J. B 1, 29 (1998); S. Xiong and S. N. Evangelou, Phys. Rev. B 64, 113107 (2001); P. Cain, Master's thesis, Technische Universit¨at Chemnitz, 1998.
    • [21] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
    • [22] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).
    • [23] B. Kramer, A. Broderix, A. MacKinnon, and M. Schreiber, Physica A 167, 163 (1990).
    • [24] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999), ArXiv: cond-mat/9812065.
    • [25] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Ro¨mer, Phys. Rev. Lett. 105, 046403 (2010).
    • [26] A. MacKinnon, J. Phys.: Condens. Matter 6, 2511 (1994).
    • [27] Y. Akita and T. Ohtsuki, J. Phys. Soc. Jap. 67, 2954 (1998).
    • [28] C. Monthus and T. Garel, Phys. Rev. B 81, 224208
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article