Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ameen, Dana Muhammad Hamed
Languages: English
Types: Doctoral thesis
Detailed within this thesis are the production of diasteromerically enriched α-aryl carbonyl compounds prepared by a new and mild method based on the Truce-Smiles rearrangement; the synthesis of 1,3-dicarbonyl compounds utilising a Baker-Venkataraman rearrangement; and the synthesis of salicylic acid derivatives and amides by a novel Baker-Venkataraman-retro-Claisen cascade. In addition, the in vitro screening of the cyclooxygenase inhibitory activity of some of the diarylethers of the acetamide based substrates prepared, has been undertaken. \ud The introduction summarises the significance and use of both the Truce-Smiles and Baker-Venkataraman rearrangement reactions in the synthesis of α aryl and α acyl carbonyl compounds, respectively. Additionally, a detailed review on some currently available chiral auxiliaries along with their applications is also mentioned. The discussion begins with the application of phase transfer catalysts, based on cinchona alkaloids, for the induction of chirality in ketone-based precursors. Further discussion continues with the synthesis of amide-based substrates from lactones and amines, and the use of C2-symmetric chiral auxiliaries to induce chirality during aryl migration. Using such an approach, a new and mild method for the production of diasteromerically enriched α aryl carbonyl compounds has been achieved. It was found that propanamide-based substrates did not rearrange whilst acetamide-based substrates did, favouring a five-membered transition state during aryl migration. In these initial efforts, only modest diastereoselectivies (dr= max. 1.7:1) were observed.\ud The amide-based substrates did not undergo the Baker-Venkataraman rearrangement, but instead suffered from facile hydrolysis. Thereafter, the section focuses on the investigation of a serendipitously discovered, novel Baker-Venkataraman-retro-Claisen cascade and its subsequent applications in the synthesis of important amides, in which, unusually, the ketone appears to act as an alkyl donor and the carbamoyl moiety as an alkyl acceptor. \ud A separate chapter is given to the cyclooxygenase activity of some of the diarylethers prepared, wherein the diarylethers of certain acetamides were screened for their activities against cyclooxygenase enzymes, COX I and COX II. The preliminary results showed that the best compound was a pyrrolidyl-acetamide based precursor which showed good to modest inhibitory activity against both COX I and COX II (25-37% and 44-70%, respectively) in the in vitro screening assay.\ud The thesis concludes with the experimental section encompassing the experimental details, spectroscopic and analytical analysis of all the compounds prepared and described.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 251. Bigi, A. et al. Kinetic resolution of racemic alkoxy oxiranes by chiral lithium amides. Tetrahedron Asymmetry 9, 2293-2299 (1998).
    • 252. Kim, B. H., Lee, H. B., Hwang, J. K. & Kim, Y. G. Asymmetric induction in the conjugate addition of thioacetic acid to methacrylamides with chiral auxiliaries. Tetrahedron Asymmetry 16, 1215-1220 (2005).
    • 253. Silverman, R. B. The organic chemistry of drug design and drug action. (Elsevier Academic Press, 1992).
    • 254. Dandia, A., Singh, R., Singh, D., Laxkar, A. & Sivpuri, A. Regioselective Synthesis of Diltiazem Analogue Pyrazolo[4,3-c][1,5]benzothiazepines and Antifungal Activity. Phosphorus Sulfur Silicon Relat. Elem. 185, 2472-2479 (2010).
    • 255. Kano, T. & Maruoka, K. Unique properties of chiral biaryl-based secondary amine catalysts for asymmetric enamine catalysis. Chem. Sci. 4, 907-915 (2013).
    • 256. Muñoz-Muñiz, O. & Juaristi, E. Enantioselective alkylation and protonation of prochiral enolates in the asymmetric synthesis of β-amino acids. Tetrahedron 59, 4223-4229 (2003).
    • 257. Melgar-Fernández, R., González-Olvera, R. & Juaristi, E. Corrigendum to 'Enantioselective alkylation and protonation of prochiral enolates in the asymmetric synthesis of β-amino acids' [Tetrahedron 59 (2003) 4223]. Tetrahedron 61, 4329-4333 (2005).
    • 258. Eagon, S. et al. Enantioselective reduction of α-substituted ketones mediated by the boronate ester TarB-NO2. Tetrahedron Lett. 51, 6418-6421 (2010).
    • 259. Buu-Hoï, N. P. & Lavit, D. The bromination of o- and p-hydroxyaryl ketones. J Chem Soc 18-20 doi:10.1039/JR9550000018
    • 260. Yu, W. et al. Discovery and SAR of hydantoin TACE inhibitors. Bioorg. Med. Chem. Lett. 20, 1877-1880 (2010).
    • 261. Bruneau, P., Delvare, C., Edwards, M. P. & McMillan, R. M. Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity. J. Med. Chem. 34, 1028-1036 (1991).
    • 262. Ameen, D. & Snape, T. J. Developing the Scope of O→C Aryl Migrations: Exploring Amide Substrates as Potential Precursors for Asymmetric Reactions. Eur. J. Org. Chem. 2014, 1925-1934 (2014).
    • 263. Bordwell, F. G. & Harrelson Jr, J. A. Acidities and homolytic bond dissociation energies of the αC-H bonds in ketones in DMSO. Can. J. Chem. 68, 1714-1718 (1990).
    • 264. Gómez-Bombarelli, R., Calle, E. & Casado, J. Mechanisms of Lactone Hydrolysis in Neutral and Alkaline Conditions. J. Org. Chem. 78, 6868-6879 (2013).
    • 265. Simon, C., Constantieux, T. & Rodriguez, J. Utilisation of 1,3-Dicarbonyl Derivatives in Multicomponent Reactions. Eur. J. Org. Chem. 2004, 4957-4980 (2004).
    • 266. Kozikowski, A. P. & Tückmantel, W. Chemistry, Pharmacology, and Clinical Efficacy of the Chinese Nootropic Agent Huperzine A. Acc. Chem. Res. 32, 641-650 (1999).
    • 267. Ahmad, N. M., Rodeschini, V., Simpkins, N. S., Ward, S. E. & Blake, A. J. Synthesis of Polyprenylated Acylphloroglucinols Using Bridgehead Lithiation:  The Total Synthesis of Racemic Clusianone and a Formal Synthesis of Racemic Garsubellin A. J. Org. Chem. 72, 4803-4815 (2007).
    • 268. Moseley, J. D. Alternative esters in the synthesis of ZD0947. Tetrahedron Lett. 46, 3179- 3181 (2005).
    • 269. Cotterill, I. C. et al. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett. 39, 1117-1120 (1998).
    • 270. Tietze, L. F., Rackelmann, N. & Müller, I. Enantioselective Total Syntheses of the Ipecacuanha Alkaloid Emetine, the Alangium Alkaloid Tubulosine and a Novel Benzoquinolizidine Alkaloid by Using a Domino Process. Chem. - Eur. J. 10, 2722-2731 (2004).
    • 271. Goss, J. M. & Schaus, S. E. Enantioselective Synthesis of SNAP-7941: Chiral Dihydropyrimidone Inhibitor of MCH1-R. J. Org. Chem. 73, 7651-7656 (2008).
    • 272. Noël, R., Fargeau-Bellassoued, M.-C., Vanucci-Bacqué, C. & Lhommet, G. Convenient One-Pot Synthesis of Chiral Tetrahydropyridines via a Multicomponent Reaction. Synthesis 2008, 1948-1954 (2008).
    • 273. Mahling, J.-A., Jung, K.-H. & Schmidt, R. R. Glycosyl imidates, 69. Synthesis of flavone C-glycosides vitexin, isovitexin, and isoembigenin. Liebigs Ann. 1995, 461-466 (1995).
    • 274. Davis, B. R. & Garatt, P. J. Comprehensive Organic Synthesis. 2.
    • 275. Claisen, L. & Claparède, A. Condensationen von Ketonen mit Aldehyden. Berichte Dtsch. Chem. Ges. 14, 2460-2468 (1881).
    • 276. Claisen, L. Ueber die Einführung von Säureradicalen in Ketone. Berichte Dtsch. Chem. Ges. 20, 655-657 (1887).
    • 277. Jukic, M., Sterk, D. & Casar, Z. Recent Advances in the Retro-Claisen Reaction and Its Synthetic Applications. Curr. Org. Synth. 9, 488-512 (2012).
    • 278. Heath, R. J. & Rock, C. O. The Claisen condensation in biology. Nat. Prod. Rep. 19, 581- 596 (2002).
    • 279. Grogan, G. Emergent mechanistic diversity of enzyme-catalysed β-diketone cleavage. Biochem. J. 388, 721 (2005).
    • 280. Grogan, G. β-Diketone hydrolases. J. Mol. Catal. B Enzym. 19-20, 73-82 (2002).
    • 281. Hamed, R. B., Batchelar, E. T., Clifton, I. J. & Schofield, C. J. Mechanisms and structures of crotonase superfamily enzymes - How nature controls enolate and oxyanion reactivity. Cell. Mol. Life Sci. 65, 2507-2527 (2008).
    • 283. Johnson, D. A., Waugh, A. B., Hambley, T. W. & Taylor, J. C. Synthesis and crystal structure of 1,1,1,5,5,5-hexafluoro-2-aminopentan-4-one (HFAP). J. Fluor. Chem. 27, 371-378 (1985).
    • 285. Gupta, S. K. Exceptionally facile reaction of .alpha.,.alpha.-dichloro-.beta.-keto esters with bases. J. Org. Chem. 38, 4081-4082 (1973).
    • 286. Burdett, J. L. & Rogers, M. T. Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy.1 I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds. J. Am. Chem. Soc. 86, 2105-2109 (1964).
    • 287. Pearson, R. G. & Mayerle, E. A. Mechanism of the Hydrolytic Cleavage of CarbonCarbon Bonds. I. Alkaline Hydrolysis of β-Diketones1. J. Am. Chem. Soc. 73, 926-930 (1951).
    • 288. Hauser, C. R., Swamer, F. W. & Ringler, B. I. Alkaline Cleavage of Unsymmetrical β- Diketones. Ring Opening of Acylcylohexanones to Form ε-Acyl Caproic Acids1. J. Am. Chem. Soc. 70, 4023-4026 (1948).
    • 289. Rouchaud, J., Neus, O., Bulcke, R., Cools, K. & Eelen, H. Sulcotrione Soil Metabolism in Summer Corn Crops. Bull. Environ. Contam. Toxicol. 61, 669-676 (1998).
    • 290. Bedos-Belval, F., Rouch, A., Vanucci-Bacqué, C. & Baltas, M. Diaryl ether derivatives as anticancer agents - a review. MedChemComm 3, 1356-1372 (2012).
    • 291. Sriram, D., Yogeeswari, P. & Devakaram, R. V. Synthesis, in vitro and in vivo antimycobacterial activities of diclofenac acid hydrazones and amides. Bioorganic Amp Med. Chem. 14, 3113-3118 (2006).
    • 292. Inoue, T. et al. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model. BMC Urol. 13, 1 (2013).
    • 293. S., S., P., M. & S., V. Design, molecular docking, synthesis and evaluation of some heterocyclic analogues of diclofenac as potent analgesic and anti-inflammatory agents with less ulcerogenicity. Pharma Chem. 3, 443-455 (2011).
    • 294. Nugteren, D. H. & Hazelhof, E. Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim. Biophys. Acta 326, 448-461 (1973).
    • 295. Hamberg, M. & Samuelsson, B. Detection and Isolation of an Endoperoxide Intermediate in Prostaglandin Biosynthesis. Proc. Natl. Acad. Sci. 70, 899-903 (1973).
    • 296. Chandrasekharan, N. V. & Simmons, D. L. The cyclooxygenases. Genome Biol. 5, 241 (2004).
    • 297. Mattia, C. & Coluzzi, F. COX-2 inhibitors: pharmacological data and adverse effects. Minerva Anestesiol. 71, 461-470 (2005).
    • 298. Garavito, R. M. & DeWitt, D. L. The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. Biochim. Biophys. Acta 1441, 278-287 (1999).
    • 299. Cipollone, F., Cicolini, G. & Bucci, M. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol. Ther. 118, 161-180 (2008).
    • 300. Blobaum, A. L. & Marnett, L. J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem. 50, 1425-1441 (2007).
    • 301. Xie, W. L., Chipman, J. G., Robertson, D. L., Erikson, R. L. & Simmons, D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. U. S. A. 88, 2692-2696 (1991).
    • 302. Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J. A. & Reddy, S. T. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. U. S. A. 100, 1751-1756 (2003).
    • 303. Calder, P. C. Dietary modification of inflammation with lipids. Proc. Nutr. Soc. 61, 345- 358 (2002).
    • 304. Bell-Parikh, L. C. et al. Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J. Clin. Invest. 112, 945-955 (2003).
    • 305. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875 (2001).
    • 306. Taketo, M. M. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). J. Natl. Cancer Inst. 90, 1609-1620 (1998).
    • 308. Wolfe, M. M., Lichtenstein, D. R. & Singh, G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 340, 1888-1899 (1999).
    • 310. Brinton, R. D. & Yamazaki, R. S. Advances and Challenges in the Prevention and Treatment of Alzheimer's Disease. Pharm. Res. 15, 386-398 (1998).
    • 311. Eikelenboom, P., Rozemuller, A. J., Hoozemans, J. J., Veerhuis, R. & van Gool, W. A. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications. Alzheimer Dis. Assoc. Disord. 14 Suppl 1, S54-61 (2000).
    • 312. Michaela A. A Blom, M. G. H. van T. NSAIDS inhibit the IL1 β-induced IL6 release from human post-mortem astrocytes: the involvement of prostaglandin E 2. Brain Res. - BRAIN RES 777, 210-218 (1997).
    • 313. Andersen, K. et al. Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer's disease? The Rotterdam Study. Neurology 45, 1441-1445 (1995).
    • 314. Galasko, D. et al. Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer's disease. Neurology 48, 632-635 (1997).
    • 315. Flynn, B. L. & Theesen, K. A. Pharmacologic management of Alzheimer disease part III: nonsteroidal antiinflammatory drugs--emerging protective evidence? Ann. Pharmacother. 33, 840-849 (1999).
    • 316. Sugaya, K., Uz, T., Kumar, V. & Manev, H. New anti-inflammatory treatment strategy in Alzheimer's disease. Jpn. J. Pharmacol. 82, 85-94 (2000).
    • 317. Hensley, K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J. Alzheimers Dis. JAD 21, 1- 14 (2010).
    • 318. Aisen, P. S. Development of antiinflammatory therapy for Alzheimer's disease. Drug Dev. Res. 56, 421-427 (2002).
    • 319. Fiebich, B. L., Lieb, K., Kammerer, N. & Hüll, M. Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia. J. Neurochem. 86, 173-178 (2003).
    • 320. Chan, F. K. L. et al. Celecoxib versus omeprazole and diclofenac in patients with osteoarthritis and rheumatoid arthritis (CONDOR): a randomised trial. Lancet 376, 173- 179 (2010).
    • 321. McKenna, F. Efficacy of diclofenac/misoprostol vs diclofenac in the treatment of ankylosing spondylitis. Drugs 45 Suppl 1, 24-30; discussion 36-37 (1993).
    • 322. Bandgar, B. P., Sarangdhar, R. J., Ahamed, F. A. & Viswakarma, S. Synthesis, Characterization, and Biological Evaluation of Novel Diclofenac Prodrugs. J. Med. Chem. 54, 1202-1210 (2011).
    • 323. Moser, P., Sallmann, A. & Wiesenberg, I. Synthesis and quantitative structure-activity relationships of diclofenac analogues. J. Med. Chem. 33, 2358-2368 (1990).
    • 324. Ferreira, S. H., Moncada, S. & Vane, J. R. Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs. Br. J. Pharmacol. 120, 401-412 (1997).
    • 325. Cryer, B. NSAID-associated deaths: the rise and fall of NSAID-associated GI mortality. Am. J. Gastroenterol. 100, 1694-1695 (2005).
    • 327. Naesdal, J. & Brown, K. NSAID-associated adverse effects and acid control aids to prevent them: a review of current treatment options. Drug Saf. Int. J. Med. Toxicol. Drug Exp. 29, 119-132 (2006).
    • 328. Penning, T. D. et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)- 1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 40, 1347- 1365 (1997).
    • 329. Talley, J. J. et al. 4-[5-Methyl-3-phenylisoxazol-4-yl]- benzenesulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. J. Med. Chem. 43, 775-777 (2000).
    • 330. Picot, D., Loll, P. J. & Garavito, R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243-249 (1994).
    • 331. Antman, E. M. et al. Use of Nonsteroidal Antiinflammatory Drugs An Update for Clinicians: A Scientific Statement From the American Heart Association. Circulation 115, 1634-1642 (2007).
    • 332. Kearney, P. M. et al. Do selective cyclo-oxygenase-2 inhibitors and traditional nonsteroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332, 1302-1308 (2006).
    • 333. Cannon, C. P. & Cannon, P. J. COX-2 Inhibitors and Cardiovascular Risk. Science 336, 1386-1387 (2012).
    • 334. Sloan, K. B., Selk, S., Haslam, J., Caldwell, L. & Shaffer, R. Acyloxyamines as prodrugs of anti-inflammatory carboxylic acids for improved delivery through skin. J. Pharm. Sci. 73, 1734-1737 (1984).
    • 335. Yano, T., Nakagawa, A., Tsuji, M. & Noda, K. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 39, 1043-1050 (1986).
    • 336. Ettmayer, P., Amidon, G. L., Clement, B. & Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem. 47, 2393-2404 (2004).
    • 337. Beaumont, K., Webster, R., Gardner, I. & Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr. Drug Metab. 4, 461-485 (2003).
    • 338. Wallace, J. L. The 1994 Merck Frosst Award. Mechanisms of nonsteroidal antiinflammatory drug (NSAID) induced gastrointestinal damage--potential for development of gastrointestinal tract safe NSAIDs. Can. J. Physiol. Pharmacol. 72, 1493-1498 (1994).
    • 339. Kim, H. et al. A molecular mechanism for the anti-inflammatory effect of taurineconjugated 5-aminosalicylic acid in inflamed colon. Mol. Pharmacol. 69, 1405-1412 (2006).
    • 340. N, G., D, N., S, D., S, D. & S, C. Synthesis, Hydrolysis Kinetics And Pharmacodynamic Profile Of Novel Prodrugs Of Flurbiprofen. Indian J. Pharm. Sci. 67, 369 (2005).
    • 341. Sagara, K. et al. Biovavailability Study of Commercial Sustained-Release Preparations of Diclofenac Sodium in Gastrointestinal Physiology Regulated-Dogs. Chem. Pharm. Bull. (Tokyo) 40, 3303-3306 (1992).
    • 342. Iqbal, Z. et al. Preparation and in-vitro in-vivo evaluation of sustained release matrix diclofenac sodium tablets using PVP-K90 and natural gums. Pak. J. Pharm. Sci. 24, 435- 443 (2011).
    • 343. Mohammad, H. N. T., Soodabeh, D. & Ali Akbar, E. Synthesis of Diclofenac Polymeric Prodrugs and Their Hydrolysis Reactivity. Iran. Polym. J. 5, 243-249 (1996).
    • 345. Pairet, M. et al. in Sel. COX-2 Inhib. (Vane, S. J. & Botting, D. J.) 27-46 (Springer Netherlands, 1998). at
    • 346. Battistini, B., Botting, R. & Bakhle, Y. COX-1 and COX-2: Toward the developpement of more selective NSAIDs. Drug News Perspect. 7, 501-512 (1994).
    • 347. Kim, Y. P. et al. Inhibition by tectorigenin and tectoridin of prostaglandin E2 production and cyclooxygenase-2 induction in rat peritoneal macrophages. Biochim. Biophys. Acta 1438, 399-407 (1999).
    • 348. Kase, Y., Saitoh, K., Ishige, A. & Komatsu, Y. Mechanisms by which Hange-shashin-to reduces prostaglandin E2 levels. Biol. Pharm. Bull. 21, 1277-1281 (1998).
    • 349. Noreen, Y., Serrano, G., Perera, P. & Bohlin, L. Flavan-3-ols isolated from some medicinal plants inhibiting COX-1 and COX-2 catalysed prostaglandin biosynthesis. Planta Med. 64, 520-524 (1998).
    • 350. Subbaramaiah, K. et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J. Biol. Chem. 273, 21875-21882 (1998).
    • 351. Sittampalam, G. S., Kahl, S. D. & Janzen, W. P. High-throughput screening: advances in assay technologies. Curr. Opin. Chem. Biol. 1, 384-391 (1997).
    • 352. Wang, H. et al. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 62, 294-296 (1999).
    • 353. Vlietnick, A. & Apers, S. in Bioact. Compd. Nat. Sources 3-29 (Taylor & Francis, 2000).
    • 354. COX Fluorescent Inhibitor Screening Assay Kit; Cyclooxygenase Fluorescent Inhibitor Screening Assay Kit Cayman Chemical Supplier. at
    • 355. Shen, T. Perspectives in Nonsteroidal Antiinflammatory Agents. Angew. Chem.-Int. Ed. 11, 460-& (1972).
    • 356. Northover, B. J. The action of anti-inflammatory drugs on the permeability of mesenteric mesothelium to plasma protein. J. Pharm. Pharmacol. 15, (1963).
    • 358. Adams, S. S., Cliffe, E. E., Lessel, B. & Nicholson, J. S. Some Biological Properties of 'ibufenac', a New Anti-Rheumatic Drug. Nature 200, (1963).
    • 359. Durant, G. J., Smith, G. M., Spickett, R. G. W. & Szarvasi, E. Nonsteroidal Antiinflammatory Agents. Some Arylacetic Acids. J. Med. Chem. 8, 598-603 (1965).
    • 360. Esser, R. et al. Preclinical pharmacology of lumiracoxib: a novel selective inhibitor of cyclooxygenase-2. Br. J. Pharmacol. 144, 538-550 (2005).
    • 361. Abdou, W. M., Ganoub, N. A. & Sabry, E. Synthesis and quantitative structure-activity relationship study of substituted imidazophosphor ester based tetrazolo[1,5- b ]pyridazines as antinociceptive/anti-inflammatory agents. Beilstein J. Org. Chem. 9, 1730-1736 (2013).
    • 362. Hadjipavlou-Litina, D. Quantitative structure--activity relationship (QSAR) studies on non steroidal anti-inflammatory drugs (NSAIDs). Curr. Med. Chem. 7, 375-388 (2000).
    • 364. Dannhardt, G. & Kiefer, W. Cyclooxygenase inhibitors - current status and future prospects. Eur. J. Med. Chem. 36, 109-126 (2001).
    • 365. Kalgutkar, A. S., Crews, B. C., Saleh, S., Prudhomme, D. & Marnett, L. J. Indolyl esters and amides related to indomethacin are selective COX-2 inhibitors. Bioorg. Med. Chem. 13, 6810-6822 (2005).
    • 366. Atkinson, D. C., Godfrey, K. E., Meek, B., Saville, J. F. & Stillings, M. R. Substituted (2- phenoxyphenyl)acetic acids with antiinflammatory activity. 1. J. Med. Chem. 26, 1353- 1360 (1983).
    • 367. Atkinson, D. C. et al. Substituted (2-phenoxyphenyl)acetic acids with antiinflammatory activity. 2. J. Med. Chem. 26, 1361-1364 (1983).
    • 368. El-Sayrafi, S. & Rayyan, S. Intramolecular Acylation of Aryl- and Aroyl-Aliphatic Acids by the Action of Pyrophosphoryl Chloride and Phosphorus Oxychloride. Molecules 6, 279-286 (2001).
    • 369. Zagorevskij et al. J. Org. Chem. USSR Engl. Transl. 3, 544 (1967).
    • 370. Krayushkin, M. M. et al. Synthesis and reactivity of 1-aryl-9H-thieno[3,4-b]chromon-9- ones. New J. Chem. 33, 2267-2277 (2009).
    • 371. Mason, H. L. α-Oximino and α-Amino Derivatives of o-Hydroxypropiophenone. J. Am. Chem. Soc. 56, 2499-2500 (1934).
    • 372. Kalinin, A. V., da Silva, A. J. M., Lopes, C. C., Lopes, R. S. C. & Snieckus, V. Directed ortho metalation - cross coupling links. Carbamoyl rendition of the baker-venkataraman rearrangement. Regiospecific route to substituted 4-hydroxycoumarins. Tetrahedron Lett. 39, 4995-4998 (1998).
    • 373. Kraus, G. A., Fulton, B. S. & Wood, S. H. Aliphatic acyl transfer in the BakerVenkataraman reaction. J. Org. Chem. 49, 3212-3214 (1984).
    • 374. Stahmann, M. A., Wolff, I. & Link, K. P. Studies on 4-Hydroxycoumarins. I. The Synthesis of 4-Hydroxycoumarins1. J. Am. Chem. Soc. 65, 2285-2287 (1943).
    • 375. Yang, K., Li, Z., Wang, Z., Yao, Z. & Jiang, S. Highly Efficient Synthesis of Phenols by Copper-Catalyzed Hydroxylation of Aryl Iodides, Bromides, and Chlorides. Org. Lett. 13, 4340-4343 (2011).
    • 376. King, L. C., McWhirter, M. & Barton, D. M. The Reactions of Acetophenols with Iodine and Pyridine and the Preparation of Hydroxybenzoic Acids. J. Am. Chem. Soc. 67, 2089- 2092 (1945).
    • 377. Ghasemnejad-Bosra, H., Ramzanian-Lehmali, F. & Jafari, S. Simple and improved regioselective brominations of aromatic compounds using N-benzyl-N,Ndimethylanilinium peroxodisulfate in the presence of potassium bromide under mild reactions conditions. (2011). at
    • 378. Yang, C.-C., Tai, H.-M. & Sun, P.-J. Conversion of α-Anilino Alkenenitriles to Amides by Chemoselective Palladium-Catalyzed Arylations. Synlett 1997, 812-814 (1997).
    • 379. Lee, J. et al. 2-Benzyl and 2-phenyl-3-hydroxypropyl pivalates as protein kinase C ligands. Bioorg Med Chem 14, 2022-2031 (2006).
    • 380. Stillings, M. R. et al. Substituted 5H-dibenz[b,g]-1,4-oxazocines and related amino acids with antiinflammatory activity. J. Med. Chem. 28, 225-233 (1985).
    • 381. Aitken, H. R. M., Furkert, D. P., Hubert, J. G., Wood, J. M. & Brimble, M. A. Enantioselective access to benzannulated spiroketals using a chiral sulfoxide auxiliary. Org. Biomol. Chem. 11, 5147-5155 (2013).
  • No similar publications.

Share - Bookmark

Cite this article