LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Robinson, James
Languages: English
Types: Doctoral thesis
Subjects: QC, QD
This thesis presents a new family of single-determinantal ab initio electronic structure\ud models ideal for the black-box computational investigation of molecular phenomena.\ud These theories mimic Variational Coupled Cluster and achieve an approximately\ud fulfilled variational upper bound property on the exact ground-state\ud Schrodinger energy eigenvalue, while not exceeding the limiting computational\ud complexity of the well-known CCSD method, and without sacrificing any other\ud advantageous methodological property. In particular, these Approximate Vari-\ud ational Coupled Cluster Theories are formulated through the minimization of a\ud rigorously extensive and orbitally-invariant functional that treats certain limiting\ud systems exactly. Unlike CCSD and related methods, for which it is extremely\ud problematic, these theories are highly robust to the breakdown of the Hartree-\ud Fock approximation that occurs when the single Slater determinant of minimal\ud energy becomes an inadequate qualitative description of the true electronic wavefunction.\ud Furthermore, presented results suggest that when the essential physics of\ud strong non-dynamic correlation is captured by a near-variational ansatz, remaining\ud dynamic correlation effects may be legitimately included perturbatively, with\ud implications for the design of future electronic structure models because the failure\ud of methods such as CCSD(T) to describe the dissociation of multiple bonds\ud may be ascribed to the inadequate non-variational description of the electronic\ud structure at the CCSD level, and not to a breakdown of perturbation theory;\ud Optimized-Orbital Quasi-Variational Coupled Cluster Doubles with a perturbative\ud treatment of triple excitations (OQVCCD(T)) is capable of predicting a\ud physically correct and quantitatively accurate potential energy curve for diatomic\ud nitrogen, N2, which has not been achieved, at the time of writing, by any other\ud practical (O(o2v4)-iterative O(o3v4)-non-iterative) method based on Restricted\ud Hartree-Fock theory. The method is demonstrated to be additionally suitable for\ud the black-box description of singlet multiradicals through application to model\ud hydrogen chains.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).
    • [2] V. Fock, Z. Phys. 61, 126 (1930).
    • [3] C. M ller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
    • [4] N. C. Handy, P. J. Knowles, and K. Somasundram, Theor. Chem. Acc. 68, 87 (1985).
    • [5] O. Christiansen, J. Olsen, P. J rgensen, H. Koch, and P.-A. Malmqvist, Chem. Phys. Lett. 261, 369 (1996).
    • [6] J. Olsen, P. J rgensen, T. Helgaker, and O. Christiansen, J. Chem. Phys. 112, 9736 (2000).
    • [7] P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).
    • [8] R. Ahlrichs, P. Scharf, and C. Ehrhardt, J. Chem. Phys. 82, 890 (1985).
    • [9] D. P. Chong and S. R. Langho , J. Chem. Phys. 84, 5606 (1986).
    • [10] R. Ahlrichs, J. Chem. Phys. 48, 1819 (1968).
    • [11] W. Meyer, J. Chem. Phys. 58, 1017 (1973).
    • [12] C. Kollmar and F. Neese, Molecular Physics 108, 2449 (2010).
    • [13] W. Kutzelnigg, Unconventional Aspects of Coupled-Cluster Theory, in Recent Progress in Coupled Cluster Methods, edited by P. Carsky, J. Paldus, and J. Pittner, pages 1{61, Springer, 2010.
    • [15] S. Koch and W. Kutzelnigg, Theor. Chim. Acta 59, 387 (1981).
    • [16] R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979).
    • [17] S. R. Langho and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
    • [18] M. Nooijen and R. J. LeRoy, J. Mol. Struct.: THEOCHEM 768, 25 (2006).
    • [19] F. Coester, Nucl. Phys. 7, 421 (1958).
    • [20] F. Coester and H. Kummel, Nucl. Phys. 17, 477 (1960).
    • [21] J. C zek, J. Chem. Phys. 45, 4256 (1966).
    • [22] J. C zek, Advan. Chem. Phys. 14, 35 (1969).
    • [23] J. C zek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).
    • [24] R. J. Barlett and G. D. Purvis III, Int. J. Quantum Chem. 14, 561 (1978).
    • [25] R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).
    • [26] G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
    • [27] E. Merzbacher, Quantum Mechanics, Wiley, New York, 2nd edition, 1970.
    • [28] B. Cooper and P. J. Knowles, J. Chem. Phys. 133, 234102 (2010).
    • [29] H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
    • [30] P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
    • [31] R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988).
    • [32] P. G. Szalay and R. J. Bartlett, Chem. Phys. Lett. 214, 481 (1993).
    • [33] H.-J. Werner and P. J. Knowles, Theor. Chem. Acc. 78, 175 (1991).
    • [34] A. Krylov, C. Sherrill, E. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 10669 (1998).
    • [35] J. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 124102 (2010).
    • [36] J. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010).
    • [37] A. Krylov, Chem. Phys. Lett. 338, 375 (2001).
    • [38] A. Krylov, Chem. Phys. Lett. 350, 522 (2001).
    • [39] M. Nooijen and R. Bartlett, J. Chem. Phys. 107, 6812 (1997).
    • [40] K. Sattelmeyer, H. Schaefer, and J. Stanton, Chem. Phys. Lett. 378, 42 (2003).
    • [41] P.-D. Fan and P. Piecuch, Adv. Quantum Chem. 51, 1 (2006).
    • [42] P. Piecuch, I. S. O. Pimienta, P.-D. Fan, and K. Kowalski, ACS symposium series 958, 37 (2007).
    • [43] P. Piecuch, K. Kowalski, P.-D. Fan, and I. S. O. Pimienta, Progress in Theoretical Chemistry and Physics 12, 119 (2010).
    • [44] T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 113, 8873 (2000).
    • [45] P.-D. Fan, K. Kowalski, and P. Piecuch, Molec. Phys. 103, 2191 (2005).
    • [46] W. Kutzelnigg, J. Chem. Phys. 77, 3081 (1982).
    • [47] W. Kutzelnigg and S. Koch, J. Chem. Phys. 79, 4315 (1983).
    • [48] W. Kutzelnigg, J. Chem. Phys. 82, 4166 (1984).
    • [50] W. Kutzelnigg, Theor. Chem. Acc. 80, 349 (1991).
    • [51] R. J. Bartlett and J. Noga, Chem. Phys. Lett. 150, 29 (1988).
    • [52] W. Kutzelnigg, Theo. Chim. Acta 80, 349 (1991).
    • [53] J. Arponen, Annals of Physics 151, 311 (1983).
    • [54] W. Kutzelnigg, Mol. Phys. 94, 65 (1998).
    • [55] T. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 330, 585 (2000).
    • [56] F. A. Evangelista, J. Chem. Phys. 134, 224102 (2011).
    • [57] P. Dirac, Proc. R. Soc. A 123, 714 (1929).
    • [58] P. Atkins and R. Friedman, Molecular Quantum Mechanics, Oxford University Press, 4th edition, 2007.
    • [59] A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996.
    • [60] H. A. Anton and C. Rorres, Elementary Linear Algebra, Wiley, 9th edition, 2005.
    • [61] M. Boas, Mathematical Methods in the Physical Sciences, edition, 1983.
    • [72] C. Kollmar, J. Chem. Phys. 125, 084108 (2006).
    • [73] C. Kollmar and F. Neese, J. Chem. Phys. 135, 084102 (2011).
    • [74] L. M. J. Huntington and M. Nooijen, J. Chem. Phys. 133, 184109 (2010).
    • [75] D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).
    • [76] D. A. Mazziotti, Acc. Chem. Res. 39, 207 (2006).
    • [77] A. DePrince III, E. Kamarchik, and D. Mazziotti, J. Chem. Phys. 128, 234103 (2008).
    • [78] A. Sand, C. Schwerdtfeger, and D. Mazziotti, J. Chem. Phys. 136, 034112 (2012).
    • [79] T. Crawford and H. Schaefer, Rev. Comp. Chem. 14, 33 (2007).
    • [80] S. R. Gwaltney, C. D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 3548 (2000).
    • [81] S. R. Gwaltney and M. Head-Gordon, J. Chem. Phys. 115, 2014 (2001).
    • [82] S. Kucharski and R. Bartlett, J. Chem. Phys. 108, 5243 (1998).
    • [83] A. Taube and R. Bartlett, J. Chem. Phys. 128, 044110 (2008).
    • [84] A. Taube and R. Bartlett, J. Chem. Phys. 128, 044111 (2008).
    • [85] M. Musial and R. J. Bartlett, J. Chem. Phys. 133, 104102 (2010).
    • [86] H.-J. Werner et al., Molpro, version 2010.2, a package of ab initio programs, 2011, see http://www.molpro.net.
    • [87] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schutz, WIREs Comput. Mol. Sci. 2, 242 (2012).
    • [88] R. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).
    • [89] P. J. Knowles and B. Cooper, J. Chem. Phys. 133, 224106 (2010).
    • [90] J. M. Howie, Real Analysis, Springer, 1st edition, 2001.
    • [91] J. M. Howie, Complex Analysis, Springer, 1st edition, 2003.
    • [92] W. Meyer, J. Chem. Phys. 58, 1017 (1973).
    • [93] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 (1998).
    • [94] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 135, 044113 (2011).
    • [95] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 136, 054114 (2012).
    • [96] N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W. Trucks, Chem. Phys. Lett. 164, 185 (1989).
    • [97] K. A. Brueckner, Phys. Rev. 96, 508 (1954).
    • [98] R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
    • [99] D. J. Thouless, The Quantum Mechanics of Many-Body Systems, Academic, New York, 1961.
    • [100] C. Kollmar and A. He elmann, Theor. Chem. Acc. 127, 311 (2009).
    • [101] L. Adamowicz, W. D. Laidig, and R. J. Bartlett, Int. J. Quantum Chem. Symp. 18, 245 (1984).
    • [102] C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992).
    • [103] T. D. Crawford and J. F. Stanton, J. Chem. Phys. 112, 7873 (2000).
    • [104] J. B. Robinson and P. J. Knowles, Phys. Chem. Chem. Phys. 14, 6729 (2012).
    • [108] J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).
    • [109] M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).
    • [110] W. D. Laidig, P. Saxe, and R. J. Bartlett, J. Chem. Phys. 86, 887 (1987).
    • [111] S. R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000).
    • [112] P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005).
    • [113] S. R. Langho and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
    • [114] M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).
    • [117] Y. Ge, M. Gordon, and P. Piecuch, J. Chem. Phys. 127, 174106 (2007).
    • [126] F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Adv. Mater. 20, 4641 (2008).
    • [127] Z. Li et al., Chem. Phys. Lett. 441, 123 (2007).
    • [128] W. Zhao, J. Phys. Chem. Lett. 2, 482 (2011).
    • [129] M. Samoc et al., Inorg. Chem. 47, 9946 (2008).
    • [130] R. Zalesny et al., Phys. Chem. Chem. Phys. 12, 373 (2010).
    • [131] S. Ohira et al., J. Am. Chem. Soc. 131, 6099 (2009).
    • [132] H. Reis et al., J. Comp. Chem. 32, 908 (2011).
    • [133] R. Orlando et al., J. Phys. Chem. A 115, 12631 (2011).
    • [134] S. R. Marder et al., Science 261, 186 (1993).
    • [135] F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, J. Am. Chem. Soc. 116, 10703 (1994).
    • [136] J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce, Chem. Rev. 94, 243 (1994).
    • [137] R. R. Tykwinski et al., J. Phys. Chem. B 102, 4451 (1998).
    • [138] B. Champagne and E. A. Perpete, Int. J. Quantum Chem. 75, 441 (1999).
    • [139] B. Champagne et al., J. Phys. Chem. A 104, 4755 (2000).
    • [140] S. Borini, P. A. Limacher, and H. P. Luthi, J. Chem. Phys. 131, 124105 (2009).
    • [141] M. de Wergifosse and B. Champagne, J. Chem. Phys. 134, 074113 (2011).
    • [142] M. Nakano, T. Minami, R. Kishi, Y. Shigeta, and B. Champagne, J. Chem. Phys. 136, 024315 (2012).
    • [143] M. Nakano et al., J. Phys. Chem. A 109, 885 (2005). [145] H. Nagai et al., Chem. Phys. Lett. 489, 212 (2010).
    • [148] R. J. Bartlett and G. D. Purvis III, Phys. Rev. A 20, 1313 (1979).
    • [149] P. Limacher, L. Qingxu, and H. Luthi, J. Chem. Phys. 135, 014111 (2011).
    • [150] H. Sekino, Y. Maeda, M. Kamiya, and K. Hirao, J. Chem. Phys. 126, 014107 (2007).
    • [151] J.-W. Song, M. Watson, H. Sekino, and K. Hirao, J. Chem. Phys. 129, 024117 (2008).
    • [152] B. Kirtman et al., J. Chem. Phys. 128, 114108 (2008).
    • [153] T. Toto, J. Toto, C. de Melo, M. Hasan, and B. Kirtman, Chem. Phys. Lett. 244, 59 (2009).
    • [154] J.-W. Song, M. Watson, H. Sekino, and K. Hirao, Int. J. Quantum Chem. 109, 2012 (2009).
    • [155] B. Champagne and B. Kirtman, Int. J. Quantum Chem. 109, 3103 (2009).
    • [156] P. A. Limacher, K. V. Mikkelsen, and H. P. Luthi, J. Chem. Phys. 130, 194114 (2009).
    • [157] H. Sekino and R. J. Bartlett, J. Chem. Phys. 98, 3022 (1993).
    • [158] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    • [159] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
    • [160] B. Champagne et al., J. Chem. Phys. 109, 10489 (1998).
    • [161] S. J. A. van Gisbergen et al., Phys. Rev. Lett. 83, 694 (1999).
    • [162] P. Mori-Sanchez, Q. Wu, and W. Yang, J. Chem. Phys. 119, 11001 (2003).
    • [163] M. Kamiya, H. Sekino, T. Tsuneda, and K. Hirao, J. Chem. Phys. 122, 234111 (2005).
    • [164] B. Champagne and D. Mosley, J. Chem. Phys. 105, 3592 (1996).
    • [165] M. Nakano et al., J. Chem. Phys. 125, 074113 (2006).
    • [166] M. Nakano, H. Nagao, and K. Yamaguchi, Phys. Rev. A 55, 1503 (1997).
    • [167] M. Nakano et al., Chem. Phys. Lett. 432, 473 (2006).
    • [168] M. Nakano, S. Yamada, S. Kiribayashi, and K. Yamaguchi, Int. J. Quantum Chem. 70, 269 (1998).
    • [169] S. Wouters, P. A. Limacher, D. V. Neck, and P. W. Ayers, J. Chem. Phys. 136, 134110 (2012).
    • [170] B. Champagne, D. H. Mosley, M. Vracko, and J.-M. Andre, Phys. Rev. A 52, 178 (1995).
    • [171] B. Champagne, D. H. Mosley, M. Vracko, and J.-M. Andre, Phys. Rev. A 52, 1039 (1995).
    • [172] J. L. Toto, T. T. Toto, and C. P. de Melo, Chem. Phys. Lett. 245, 660 (1995).
    • [173] Q. Li, L. Chen, Q. Li, and Z. Shuai, Chem. Phys. Lett. 457, 276 (2008).
    • [174] G. Bendazzoli, S. Evangelisti, and A. Monari, Int. J. Quantum Chem. 111, 3416 (2011).
    • [175] R. H. Nobes, J. A. Pople, L. Radom, N. C. Handy, and P. J. Knowles, Chem. Phys. Lett. 138, 481 (1987).
    • [176] P. J. Knowles and N. C. Handy, J. Phys. Chem. 92, 3097 (1988).
    • [177] S. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 9221 (1998).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article