LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Theobald, Kate; Walker, Sara (2008)
Publisher: Northumbria University
Languages: English
Types: Book
Subjects: K200, F800
Within the built environment sector, there is an increasing pressure on professionals to consider the impact of development upon the environment. These pressures are rooted in sustainability, and particularly climate change. But what is meant by sustainability? It is a term whose meaning is often discussed, the most common definition taken from the Bruntland report as “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (World Commission on Environment and Development, 1987). In the built environment, the sustainability issues within the environment, social and economic spheres are often expressed through design considerations of energy, water and waste. Given the Stern Report’s economic and political case for action with respect to climate change (Stern, 2006) and the IPCC’s Fourth Assessment Report’s confirmation of the urgency of the climate change issue and it’s root causes (IPCC, 2007), the need for action to mitigate the effects of climate change is currently high on the political agenda. Excess in carbon dioxide concentrations over the natural level have been attributed to anthropogenic sources, most particularly the burning of carbon-based fossil fuels. Over 40% of Europe’s energy and 40% of Europe’s carbon dioxide emissions arise from use of energy in buildings. Energy use in buildings is primarily for space heating, water heating, lighting and appliance use. Professionals in the built environment can therefore play a significant role in meeting targets for mitigating the effects of climate change. The UK Government recently published the Code for Sustainable Homes (DCLG, 2006). Within this is the objective of development of zero carbon domestic new build dwellings by 2016. It is the domestic zero carbon homes agenda which is the focus of this report. The report is the culmination of a research project, funded by Northumbria University, and conducted from February 2008 to July 2008, involving researchers from the Sustainable Cities Research Institute (within the School of the Built Environment) and academics, also from within the School. The aim of the project was to examine, in a systematic and holistic way, the critical issues, drivers and barriers to building and adapting houses to meet zero carbon targets. The project involved a wide range of subject specialisms within the built environment and took a multi-disciplinary approach. Practitioner contribution was enabled through a workshop. The focus of this work was to review the academic literature on the built environment sector and its capabilities to meet zero carbon housing targets. It was not possible to undertake a detailed review of energy efficiency or micro-generation technologies, the focus of the research was instead in four focussed areas: policy, behaviour, supply chain and technology.What follows is the key findings of the review work undertaken. Chapter One presents the findings of the policy and regulation review. In Chapter Two the review of behavioural aspects of energy use in buildings is presented. Chapter Three presents the findings of the review of supply chain issues. Chapter Four presents the findings of the technology review, which focuses on phase change materials. A summary of the key barriers and enablers, and areas for future research work, concludes this report in Chapter Five. Research is always a work in progress, and therefore comments on this document are most welcome, as are offers of collaboration towards solutions. The School of the Built Environment at Northumbria University strives to embed its research in practical applications and solutions to the need for a low carbon economy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • DCLG (2008). DCLG (2008) Code for Sustainable Homes. Technical Guide. Online: http://www.planningportal.gov.uk/uploads/code_for_sustainable_homes_techguide.pdf Intergovernmental Panel on Climate Change (2007). Climate Change 2007: The Physical Science Basis. Summary for Policymakers: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva.
    • Stern, N. (2006). The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge.
    • Kingspan (2007).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article