Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Webb D.J. (2010)
Publisher: SPIE
Languages: English
Types: Article,Part of book or chapter of book

Classified by OpenAIRE into

arxiv: Physics::Optics
Polymer photonic crystal fibres combine two relatively recent developments in fibre technology. On the one hand, polymer optical fibre has very different physical and chemical properties to silica. In particular, polymer fibre has a much smaller Young's modulus than silica, can survive higher strains, is amenable to organic chemical processing and, depending on the constituent polymer, may absorb water. All of these features can be utilised to extend the range of applications of optical fibre sensors. On the other hand, the photonic crystal - or microstructured - geometry also offers advantages: flexibility in the fibre design including control of the dispersion properties of core and cladding modes, the possibility of introducing minute quantities of analyte directly into the electric field of the guided light and enhanced pressure sensitivity. When brought together these two technologies provide interesting possibilities for fibre sensors, particularly when combined with fibre Bragg or long period gratings. This paper discusses the features of polymer photonic crystal fibre relevant to sensing and provides examples of the applications demonstrated to date.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • A. Argyros, “Microstructured Polymer Optical Fibers,” Journal of Lightwave Technology, 27(11), 1571-1579 (2009).
    • J. C. Knight, T. A. Birks, P. S. Russell et al., “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, 21(19), 1547-1549 (1996).
    • T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 22(13), 961-963 (1997).
    • J. C. Knight, J. Broeng, T. A. Birks et al., “Photonic band cap guidance in optical fibers,” Science, 282(5393), 1476-1478 (1998).
    • W. Daum, J. Krauser, P. E. Zamzow et al., [POF - polymer Optical Fibers for Data Communication] Springer, (2001).
    • R. J. Bartlett, R. Philip-Chandy, P. Eldridge et al., “Plastic optical fibre sensors and devices,” Transactions of the Institute of Measurement and Control, 22(5), 431-457 (2000).
    • M. Silva-Lopez, A. Fender, W. MacPherson et al., “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Optics Letters, 30(23), 3129-3131 (2005).
    • G. W. Kaye, and T. H. Laby, [Tables of physical and chemical constants] Longmann, 45 (1995).
    • C. C. Ye, J. M. Dulieu-Barton, D. J. Webb et al., "Applications of polymer optical fibre grating sensors to condition monitoring of textiles", Proceedings of SPIE Vol. 7503, 75030M (2009)..
    • S. Kiesel, K. Peters, T. Hassan et al., “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Measurement Science & Technology, 18(10), 3144-3154 (2007).
    • D. Yang, J. Yu, X. Tao et al., “Structural and mechanical properties of polymeric optical fiber,” Materials Science and Engineering, A364, 256-259 (2004).
    • D. R. Blacket, M. Large, and A. Argyros, "High Strain sensing with mPOF and Long Period Gratings, 18th International COnference on Plastic Optical Fibre." Paper 52.
    • N. G. Harbach, [Fiber bragg gratings in polymer optical fibers], Thesis, EPFL, Lausanne(2008).
    • M. C. J. Large, S. Ponrathnam, A. Argyros et al., “Solution doping of microstructured polymer optical fibres,” Optics Express, 12(9), 1966-1971 (2004).
    • X. H. Yang, and L. L. Wang, “Fluorescence pH probe based on microstructured polymer optical fiber,” Optics Express, 15(25), 16478-16483 (2007).
    • F. M. Cox, A. Argyros, M. C. J. Large et al., “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Optics Express, 15(21), 13675-13681 (2007).
    • A. Wang, A. Docherty, B. T. Kuhlmey et al., “Side-hole fiber sensor based on surface plasmon resonance,” Optics Letters, 34(24), 3890-3892 (2009).
    • J. B. Jensen, P. E. Hoiby, G. Emiliyanov et al., “Selective detection of antibodies in microstructured polymer optical fibers,” Optics Express, 13(15), 5883-5889 (2005).
    • G. Emiliyanov, J. B. Jensen, O. Bang et al., “Localized biosensing with Topas microstructured polymer optical fiber,” Optics Letters, 32(5), 460-462 (2007).
    • W. J. Tomlinson, I. P. Kaminow, A. Chandross et al., “Photoinduced refractive index increase in poly(methyl methacrylate) and its applications,” Applied Physics Letters, 16, 486-489 (1970).
    • I. P. Kaminow, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Applied Physics Letters, 18(11), 497 (1971).
    • Xiong, Z., Peng et al., “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technology Letters, 11(3), 352-354 (1999).
    • H. Dobb, D. J. Webb, K. Kalli et al., “Continuous wave ultraviolet light-induced fiber Bragg gratings in fewand single-mode microstructured polymer optical fibers,” Optics Letters, 30(24), 3296-3298 (2005).
    • Z. C. Li, H. Y. Tam, L. X. Xu et al., “Fabrication of long-period gratings in poly(methyl methacrylate-comethyl vinyl ketone-cobenzyl methacrylate)-core polymer optical fiber by use of a mercury lamp,” Optics Letters, 30(10), 1117-1119 (2005).
    • D. Sáez-Rodríguez, J. L. Cruz, I. Johnson et al., “Water diffusion into UV inscripted Long Period Grating in microstructured polymer fibre,” IEEE Sensors Journal, in press (2010).
    • D. D. Davis, T. K. Gaylord, E. N. Glytsis et al., “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electronics Letters, 34(3), 302-303 (1998).
    • H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electronics Letters, 40(11), 657-8 (2004).
    • S. Savin, M. J. F. Digonnet, G. S. Kino et al., “Tunable mechanically induced long-period fiber gratings,” Optics Letters, 25(10), 710-712 (2000).
    • M. Hiscocks, M. v. Eijkelenborg, A. Argyros et al., “Stable imprinting of long-period gratings in microstructured polymer optical fibre,” Optics Express, 14(11), 4644-8 (2006).
    • Z. Zhang, P. Zhao, P. Lin et al., “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, 47(14), 4893-4896 (2006).
    • H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photonics Technology Letters, 13(8), 824-826 (2001).
    • A. D. Kersey, M. A. Davis, H. J. Patrick et al., “Fiber grating sensors,” Journal of Lightwave Technology, 15(8), 1442-1463 (1997).
    • G. D. Peng, and P. L. Chu, “Polymer optical fiber photosensitivities and highly tunable fiber gratings,” Fiber and Integrated Optics, 19, 277-293 (2000).
    • D. J. Webb, and K. Kalli, "Polymer fibre Bragg gratings" in [Fiber Bragg Grating Sensors: Thirty Years from Research to Market] Bentham eBooks, in press (2010).
    • J. Brandrup, [Polymer Handbook] Wiley, V89 (1999).
    • K. E. Carroll, C. Zhang, D. J. Webb et al., “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Optics Express, 15(14), 8844-8850 (2007).
    • C. Jiang, M. Kuzyk, J.-L. Ding et al., “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” Journal of Applied Physics, 92(1), 04-Dec (2002).
    • T. Ishigure, M. Hirai, M. Sato et al., “Graded-Index Plastic Optical Fiber with High Mechanical Properties Enabling Easy Network Installations. I,” Journal of Applied Polymer Science, 91(1), 404-409 (2003).
    • C. Zhang, X. Chen, D. J. Webb et al., "Water detection in jet fuel using a polymer optical fibre Bragg grating", Postdeadline paper, 20th International Conference on Optical Fibre Sensors, (2009).
    • C. G. Askins, M. A. Putnam, G. M. Williams et al., “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in-line on a draw tower,” Optics Letters, 19(2), 147-149 (1994).
    • D. P. Kong, and L. L. Wang, “Ultrahigh-resolution fiber-optic image guides derived from microstructured polymer optical fiber preforms,” Optics Letters, 34(16), 2435-2437 (2009).
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects


Cite this article