Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rathjen, M (2014)
Publisher: College Publications
Languages: English
Types: Part of book or chapter of book
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] B. Afshari: Proof-Theoretic Strengths of Hierarchies of Theories, PhD thesis, University of Leeds, U.K., 2008.
    • [2] B. Afshari and M. Rathjen: Reverse Mathematics and Well-ordering Principles: A pilot study, Annals of Pure and Applied Logic 160 (2009) 231-237.
    • [3] J Barwise: Admissible Sets and Structures, Springer, Berlin 1975.
    • [4] E.W. Beth: The Foundations of Mathematics, (North Holland, Amsterdam, 1959)
    • [5] W. Buchholz: A new system of proof-theoretic ordinal functions, Ann. Pure Appl. Logic 32 (1986) 195-207.
    • [6] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg: Iterated inductive definitions and subsystems of analysis (Springer, Berlin, 1981).
    • [7] W. Buchholz and K. Schu¨tte: Proof theory of impredicative subsystems of analysis (Bibliopolis, Naples, 1988).
    • [8] S. Feferman: Systems of predicative analysis, Journal of Symbolic Logic 29 (1964) 1-30.
    • [9] H. Friedman: Uniformly Defined Descending Sequences of Degrees, Journal of Symbolic Logic 41 (1976) 363-367.
    • [10] H. Friedman and S. Sheard: Elementary descent recursion and proof theory, Annals of Pure and Applied Logic 71 (1995) 1-45.
    • [11] H. Friedman, A. Montalban, A. Weiermann: A characterization of ATR0 in terms of Kruskal-like tree theorems unpublished draft.
    • [12] G. Gentzen: Untersuchungen u¨ber das logische Schließen, Mathematische Zeitschrift 39 (1935) 176-210, 405-431.
    • [13] J.-Y. Girard: Proof Theory and logical complexity, vol 1 (Bibliopolis, Napoli, 1987).
    • [14] G.H. Hardy: A theorem concerning the infinite cardinal numbers. Quarterly Journal of Mathematics 35 (1904) 87-94.
    • [15] L. Henkin: A generalization of the concept of ω-consistency, Journal of Symbolic Logic 19 (1954) 183-196.
    • [16] D. Hilbert: Die Grundlegung der elementaren Zahlentheorie, Mathematische Annalen 104 (1930/31) 485-494.
    • [17] K.J.J. Hintikka: Form and content in quantification theory, Acta Philosophica Fennica 8 (1955) 7-55.
    • [18] A. Marcone, A. Montalba´n: The epsilon function for computability theorists, draft, 2007.
    • [19] A. Marcone, A. Montalba´n: The Veblen functions for computability theorists, Journal of Symbolic Logic 76 (2011) 575-602.
    • [20] A. Montalba´n: Ordinal functors and Π11-CA0, draft December 2009.
    • [21] P.S. Novikov: On the consistency of certain logical calculi, Math. Sbornik 12 (1943) 231-261.
    • [22] S. Orey: On ω-consistency and related properties, Journal of Symbolic Logic 21 (1956) 246-252.
    • [23] M. Rathjen: The strength of Martin-L¨of type theory with a superuniverse. Part I. Archive for Mathematical Logic 39 (2000) 1-39.
    • [24] M. Rathjen: The strength of Martin-L¨of type theory with a superuniverse. Part II. Archive for Mathematical Logic 40 (2001) 207-233.
    • [25] M. Rathjen and A. Weiermann: Reverse Mathematics and Well-ordering Principles. In: S. Cooper, A. Sorbi (eds.): Computability in Context: Computation and Logic in the Real World (Imperial College Press, 2011) 351-370.
    • [26] M. Rathjen and A. Weiermann: Proof-theoretic investigations on Kruskal's theorem, Annals of Pure and Applied Logic 60 (1993) 49-88.
    • [27] K. Schu¨tte: Proof Theory, Springer-Verlag, Berlin, Heidelberg, 1977.
    • [28] K. Schu¨tte: Eine Grenze fu¨r die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik, Archiv fu¨r Mathematische Logik und Grundlagenforschung 67 (1964) 45-60.
    • [29] K. Schu¨tte: Predicative well-orderings, in: Crossley, Dummet (eds.), Formal systems and recursive functions (North Holland, 1965) 176-184.
    • [30] K. Schu¨tte: Beweistheorie, (Springer, Berlin, 1960).
    • [31] K. Schu¨tte: Ein System des verknu¨pfenden Schließens, Archiv fu¨r mathematische Logik und Grundlagenforschung 2 (1956) 55-67.
    • [32] K. Schu¨tte: Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie, Mathematische Annalen 122 (1951) 369-389.
    • [33] H. Schwichtenberg: Proof Theory: Some applications of cut-elimination. In: Handbook of Mathematical Logic (J. Barwise ed.) North Holland 1977, pp. 867-895.
    • [34] S.G. Simpson: Subsystems of Second Order Arithmetic, Springer-Verlag, Berlin, Heidelberg, 1999.
    • [35] J. Steel: Descending sequences of degrees, Journal of Symbolic Logic 40 (1975) 59-61.
    • [36] A. Tarski: Some observations on the concept of ω-consistency and ω-completeness, in: Logic, Semantics, Metamathematics, (Clarendon, Oxford, 1956) 279-295.
    • [37] O. Veblen: Continuous increasing functions of finite and transfinite ordinals, Trans. Amer. Math. Soc. 9 (1908) 280-292.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article