LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QC, High Energy Physics - Theory
We investigate the thermodynamic Bethe ansatz (TBA) equations for a system of particles which dynamically interacts via the scattering matrix of affine Toda field theory and whose statistical interaction is of a general Haldane type. Up to the first leading order, we provide general approximated analytical expressions for the solutions of these equations from which we derive general formulae for the ultraviolet scaling functions for theories in which the underlying Lie algebra is simply laced. For several explicit models we compare the quality of the approximated analytical solutions against the numerical solutions. We address the question of existence and uniqueness of the solutions of the TBA-equations, derive precise error estimates and determine the rate of convergence for the applied numerical procedure. A general expression for the Fourier transformed kernels of the TBA-equations allows to derive the related Y-systems and a reformulation of the equations into a universal form.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C.N. Yang and C.P. Yang, Phys. Rev. 147 (1966) 303; J. Math. Phys. 10 (1969) 1115.
    • [2] Al.B. Zamolodchikov, Nucl. Phys. B342 (1990) 695.
    • [3] Al.B. Zamolodchikov, Nucl. Phys. B358 (1991) 497; Nucl. Phys. B358 (1991) 524; Nucl. Phys. B366 (1991) 122.
    • [4] Al.B. Zamolodchikov, Phys. Lett. B253 (1991) 391.
    • [5] T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485; B350 (1991) 635.
    • [6] M.J. Martins, Phys. Lett. B257 (1991) 317; Phys. Rev. Lett. 67 (1991) 419; J. Phys. A25 (1992) L81; Phys. Lett. B277 (1992) 301.
    • [7] G. Fererati, F. Ravanini and G Takacs, Phys. Lett. B444 (1998) 442.
    • [8] R. Ko¨berle, Proceedings of the Jorge Andr´e Swieca Summer School (1990) (hepth/9110012).
    • [9] F. Ravanini, A. Valleriani and R. Tateo, Int. J. Mod. Phys. A8 (1993) 1707.
    • [10] C. Ahn and S. Nam, Phys. Lett. B271 (1991) 329; F. Ravanini, Phys. Lett. B282 (1992) 73; C. Destri and H.J. DeVega, Phys. Rev. Lett. 69 (1992) 2313; Nucl. Phys. B438 (1995) 413; T.J. Hollowood, Phys. Lett. B320 (1994) 43; M. Moriconi and K. Schoutens, Nucl. Phys. B464 (1996) 472; P. Dorey, R. Tateo and K.E. Thompson, Nucl. Phys. B470 (1996) 317; P. Dorey and R. Tateo, Nucl. Phys. B482 (1996) 639; Nucl. Phys. B515 (1998) 575; F. Gliozzi and R. Tateo, Int. J. Mod. Phys. A11 (1996) 4051; C.T. Tracy and H. Widom, Commun. Math. Phys. 179 (1996) 667; A. Chodos and H. Minakata, Nucl. Phys. B490 (1997) 687; P.A. Pearse and B. Nienhuis, Nucl. Phys. B519 (1998) 579.
    • [11] P. Fendley and H. Saleur, Nucl. Phys. B388 (1992) 609.
    • [13] M.J. Martins, Nucl. Phys. B394 (1993) 339.
    • [14] Al.B. Zamolodchikov, Nucl. Phys. B348 (1991) 619.
    • [15] A.V. Mikhailov, M.A. Olshanetsky and A.M. Perelomov, Commun. Math. Phys. 79 (1981) 473; G. Wilson, Ergod. Th. Dyn. Syst. 1 (1981) 361; D.I. Olive and N. Turok, Nucl. Phys. B257 [FS14] (1985) 277.
    • [16] D. Cassi and C. Destri, Phys. Lett. B268 (1991) 365.
    • [17] F.D.M. Haldane, Phys. Rev. Lett. 67 (1991) 937.
    • [18] A. Bytsko and A. Fring, Nucl. Phys. B532 (1998) 588.
    • [20] P.E. Dorey and F. Ravanini, Int. J. Mod. Phys. A8 (1993) 873.
    • [21] A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Phys. Lett. 87B (1979) 389; H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990) 689; C. Destri and H.J. De Vega, Phys. Lett. B233 (1989) 336, Nucl. Phys. B358 (1991) 251; P.G.O. Freund, T.R. Klassen and E. Melzer, Phys. Lett. B229 (1989) 243; P. Christe and G. Mussardo, Nucl. Phys. B330 (1990) 465, Int. J. Mod. Phys. A5 (1990) 4581.
    • [22] P.E. Dorey, Nucl. Phys. B358 (1991) 654; Nucl. Phys. B374 (1992) 741.
    • [23] A. Fring and D.I. Olive, Nucl. Phys. B379 (1992) 429.
    • [24] S. Berman, Y.S. Lee and R.V. Moody, J . Algebra 121 (1989) 339.
    • [25] T. Oota, Nucl. Phys. B504 (1997) 738.
    • [26] E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B408 (1993) 579.
    • [27] P. Dorey, Phys. Lett. B312 (1993) 291;
    • [36] A.B. Zamolodchikov, JETP Lett. 43 (1986) 730.
    • [37] A. Fring, C. Korff and B.J. Schulz in preparation.
    • [38] G. Mussardo and P. Simonetti, Int. J. Mod. Phys. A8 (1994) 3307.
    • [39] P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, hep-th/9812211.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article