Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Bo; Saad, David
Languages: English
Types: Article
Subjects: Nonlinear Sciences - Pattern Formation and Solitons, Nonlinear Sciences - Adaptation and Self-Organizing Systems
Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Juan A. Acebrón, L. L. Bonilla, Conrad J. Pérez Vicente, Félix Ritort, and Renato Spigler. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137-185, Apr 2005.
    • 2S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, and C.S. Zhou. The synchronization of chaotic systems. Physics Reports, 366(1-2):1 - 101, 2002.
    • 3Francisco A. Rodrigues, Thomas K. DM. Peron, Peng Ji, and Jürgen Kurths. The Kuramoto model in complex networks. Physics Reports, 610:1 - 98, 2016.
    • 4Mark J Panaggio and Daniel M Abrams. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 28(3):R67, 2015.
    • 5Yun Zhu, Zhigang Zheng, and Junzhong Yang. Chimera states on complex networks. Phys. Rev. E, 89:022914, Feb 2014.
    • 6Kuramoto Y. and Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena In Complex Systems, 5(4):380-385, 2002.
    • 7Shin-ichiro Shima and Yoshiki Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 69:036213, Mar 2004.
    • 8Daniel M. Abrams and Steven H. Strogatz. Chimera states for coupled oscillators. Phys. Rev. Lett., 93:174102, Oct 2004.
    • 9Daniel M. Abrams, Rennie Mirollo, Steven H. Strogatz, and Daniel A. Wiley. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101:084103, Aug 2008.
    • 10Peter Ashwin and Oleksandr Burylko. Weak chimeras in minimal networks of coupled phase oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(1):013106, 2015.
    • 11Christian Bick. Isotropy of angular frequencies and weak chimeras with broken symmetry. Journal of Nonlinear Science, 27(2):605-626, 2017.
    • 12David Saad and Alexander Mozeika. Emergence of equilibriumlike domains within nonequilibrium ising spin systems. Phys. Rev. E, 87:032131, Mar 2013.
    • 13Edward Ott and Thomas M. Antonsen. Low dimensional behavior of large systems of globally coupled oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3):037113, 2008.
    • 14Erik A Martens, Mark J Panaggio, and Daniel M Abrams. Basins of attraction for chimera states. New Journal of Physics, 18(2):022002, 2016.
    • 15Mark R. Tinsley, Simbarashe Nkomo, and Kenneth Showalter. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat Phys, 8(9):662-665, Sep 2012.
    • 16Aaron M. Hagerstrom, Thomas E. Murphy, Rajarshi Roy, Philipp Hovel, Iryna Omelchenko, and Eckehard Scholl. Experimental observation of chimeras in coupled-map lattices. Nat Phys, 8(9):658-661, Sep 2012.
    • 17Erik Andreas Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar Hallatschek. Chimera states in mechanical oscillator networks. Proceedings of the National Academy of Sciences, 110(26):10563-10567, 2013.
    • 18Tomasz Kapitaniak, Patrycja Kuzma, Jerzy Wojewoda, Krzysztof Czolczynski, and Yuri Maistrenko. Imperfect chimera states for coupled pendula. Scientific Reports, 4:6379, Sep 2014. Article.
    • 19Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268-276, Mar 2001.
    • 20Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47-97, Jan 2002.
    • 21Alex Arenas, Albert Díaz-Guilera, Jürgen Kurths, Yamir Moreno, and Changsong Zhou. Synchronization in complex networks. Physics Reports, 469(3):93 - 153, 2008.
    • 22Vesna Vuksanović and Philipp Hövel. Functional connectivity of distant cortical regions: Role of remote synchronization and symmetry in interactions. NeuroImage, 97:1 - 8, 2014.
    • 23Johanne Hizanidis, Nikos E. Kouvaris, Gorka Zamora-López, Albert Díaz-Guilera, and Chris G. Antonopoulos. Chimera-like states in modular neural networks. Scientific Reports, 6:19845, Jan 2016. Article.
    • 24Tae-Wook Ko and G. Bard Ermentrout. Partially locked states in coupled oscillators due to inhomogeneous coupling. Phys. Rev. E, 78:016203, Jul 2008.
    • 25Carlo R. Laing. Chimera states in heterogeneous networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(1):013113, 2009.
    • 26Carlo R. Laing. The dynamics of chimera states in heterogeneous kuramoto networks. Physica D: Nonlinear Phenomena, 238(16):1569 - 1588, 2009.
    • 27Carlo R. Laing, Karthikeyan Rajendran, and Ioannis G. Kevrekidis. Chimeras in random non-complete networks of phase oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(1):013132, 2012.
    • 28Iryna Omelchenko, Astero Provata, Johanne Hizanidis, Eckehard Schöll, and Philipp Hövel. Robustness of chimera states for coupled fitzhugh-nagumo oscillators. Phys. Rev. E, 91:022917, Feb 2015.
    • 29Arturo Buscarino, Mattia Frasca, Lucia Valentina Gambuzza, and Philipp Hövel. Chimera states in time-varying complex networks. Phys. Rev. E, 91:022817, Feb 2015.
    • 30Xin Jiang and Daniel M. Abrams. Symmetry-broken states on networks of coupled oscillators. Phys. Rev. E, 93:052202, May 2016.
    • 31Simona Olmi and Alessandro Torcini. Chimera states in pulse coupled neural networks: the influence of dilution and noise. eprint, arXiv:1606.08618, 2017.
    • 32Changsong Zhou and Jürgen Kurths. Hierarchical synchronization in complex networks with heterogeneous degrees. Chaos, 16(1):015104, 2006.
    • 33Jesús Gómez-Gardeñes, Yamir Moreno, and Alex Arenas. Paths to synchronization on complex networks. Phys. Rev. Lett., 98:034101, Jan 2007.
    • 34Jesús Gómez-Gardeñes, Sergio Gómez, Alex Arenas, and Yamir Moreno. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett., 106:128701, Mar 2011.
    • 35Tiago Pereira. Hub synchronization in scale-free networks. Phys. Rev. E, 82:036201, Sep 2010.
    • 36Jean-Pierre Eckmann, Elisha Moses, Olav Stetter, Tsvi Tlusty, and Cyrille Zbinden. Leaders of neuronal cultures in a quorum percolation model. Frontiers in Computational Neuroscience, 4:132, 2010.
    • 37Per Sebastian Skardal, Dane Taylor, Jie Sun, and Alex Arenas. Erosion of synchronization in networks of coupled oscillators. Phys. Rev. E, 91:010802, Jan 2015.
    • 38Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer-Verlag Berlin Heidelberg, 1984.
    • 39Per Sebastian Skardal, Dane Taylor, Jie Sun, and Alex Arenas. Erosion of synchronization: Coupling heterogeneity and network structure. Physica D: Nonlinear Phenomena, 323-324:40 - 48, 2016.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article