Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Shanghai Normal University & Wilmington Scientific Publisher
Languages: English
Types: Article
By introducing the sequence-block transformation and vector-block transformation, a discussion of symbolic dynamics of hybrid cellular automation (HCA) and hybrid cellular automation with memory (HCAM) is presented in this paper. As the local evolution rules of HCA and HCAM are not uniform, the new uniform cellular automata (CAs) with multiple states can be constructed by specific block transformations. It is proved that the new CA rules are topologically conjugate with the originals. Furthermore, the complex dynamics of the HCA and HCAM rules can be investigated via the new CA rules.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. von-Neumann, Theory of Self-reproducing Automata, University of Illinois Press, Urbana, 1966.
    • [2] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55(1983)(3), 601-644.
    • [3] S. Wolfram, Universality and complexity in cellular automata, Phys. D, 10(1984)(1-2), 1-35.
    • [4] S. Wolfram, Theory and Applications of Cellular Automata, World Scientifc, Singapore, 1986.
    • [5] S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, 2002.
    • [6] L. O. Chua, V. I. Sbitnev and S. Yoon, A nonlinear dynamics perspective of Wolfram's new kind of science. Part I: threshold of complexity, Int. J. Bifur. Chaos, 12(2002)(12), 2655-2766.
    • [7] L. O. Chua, G. E. Pazienza and J. Shin, A nonlinear dynamics perspective of Wolfram's new kind of science. Part X: period-1 rules, Int. J. Bifur. Chaos, 19(2009)(5), 1425-1654.
    • [8] L. O. Chua, G. E. Pazienza and J. Shin, A nonlinear dynamics perspective of Wolfram's new kind of science. Part XI: period-2 rules, Int. J. Bifur. Chaos, 19(2009)(6), 1751-1930.
    • [9] L. O. Chua and G. E. Pazienza, A nonlinear dynamics perspective of Wolfram's new kind of science. Part XII: period-3, period-6, and permutive rules, Int. J. Bifur. Chaos, 19(2009)(12), 3887-4038.
    • [10] L. O. Chua and G. E. Pazienza, A nonlinear dynamics perspective of Wolfram's new kind of science. Part XIII: Bernoulli -shift rules, Int. J. Bifur. Chaos, 20(2010)(7), 1859-2003.
    • [11] K. Cattell and J. C. Muzio, Synthesis of one-dimensional linear hybrid cellular automata, IEEE Trans. Computers, 15(1996)(3), 325-335.
    • [12] J. Binghama and B. Binghamb, Hybrid one-dimensional reversible cellular automata are regular, Discrete Appl. Math., 155(2007)(18), 2555-2566.
    • [13] C. F. Rubio, L. H. Encinas, S. H. White, A. M. Rey and G. R. Sanchez, The use of linear hybrid cellular automata as pseudorandom bit generators in cryptography, Neural Parallel Sci. Comput., 12(2004)(2), 175-192.
    • [14] D. Radu, Hybrid cellular automata as pseudo-random number generators with binary synchronization property, in Proceedings of the International Symposium on Signals Circuits and Systems, (2009), 389-392.
    • [15] D. Radu and D. Ioana, E cient and cryptographically secure pseudorandom number generators based on chains of hybrid cellular automata maps, in Proceedings of COMM 2014 10th International Conference on Communications, (2014).
    • [16] R. Alonso-Sanz and M. Martin, Elementary cellular automata with memory, Complex Systems, 14(2003)(2), 99-126.
    • [17] R. Alonso-Sanz and M. Martin, Three-state one-dimensional cellular automata with memory, Chaos, Solitons and Fract., 21(2004)(4), 809-834.
    • [18] R. Alonso-Sanz, Elementary cellular automata with memory of delay type, 19th International Workshop, AUTOMATA 2013, 8155(2013), 67-83.
    • [19] G. J. Mart nez, A. Adamatzky, R. Alonso-Sanz and J. C. Seck-Tuoh-Mora, Complex dynamic emerging in rule 30 with majority memory, Complex Systems, 18(2010)3, 345-365.
    • [20] G. J. Mart nez, A. Adamatzky, J. C. Seck-Tuoh-Mora and R. Alonso-Sanz, How to make dull cellular automata complex by adding memory: rule 126 case study, Complexity, 15(2010)(6), 34-49.
    • [21] G. J. Mart nez, A. Adamatzky and R. Alonso-Sanz, Designing complex dynamics in cellular automata with memory, Int. J. Bifur. Chaos, 23(2013)(10), 1330035.
    • [22] J. B. Guan, S. W. Shen, C. B. Tang and F. Y. Chen, Extending Chua's global equivalence theorem on Wolfram's new kind of science, Int. J. Bifur. Chaos, 17(2007)(12), 4245-4259.
    • [23] F. Y. Chen, W. F. Jin ,G. R. Chen, F. F. Chen and L. Chen, Chaos of elementary cellular automata rule 42 of wolfram's class II, Chaos, 19(2009)(1), 013140.
    • [24] W. F. Jin, F. Y. Chen, G. R. Chen, L. Chen, and F. F. Chen, Extending the symbolic dynamics of Chua's Bernoulli-shift rule 56, J. Cell. Automata, 5(2010)(1-2), 121-138.
    • [25] Z. L. Zhou, Symbolic Dynamics, Shanghai Scienti c and technological Education Publishing House, Shanghai, 1997.
    • [26] B. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Springer-Verlag, Berlin, 1998.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article