LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Oxford University Press
Journal: The Journal of Infectious Diseases
Languages: English
Types: Article
Subjects: wc_750, wh_400, proteomics, Major Articles and Brief Reports, P. falciparum, spectrin, Parasites, cerebral malaria, ws_340, platelet activation, qu_58.5

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Clinical signs and symptoms of cerebral malaria in children are nonspecific and are seen in other common encephalopathies in malaria-endemic areas. This makes accurate diagnosis difficult in resource-poor settings. Novel malaria-specific diagnostic and prognostic methods are needed. We have used 2 proteomic strategies to identify differentially expressed proteins in plasma and cerebrospinal fluid from children with a diagnosis of cerebral malaria, compared with those with a diagnosis of malaria-slide-negative acute bacterial meningitis and other nonspecific encephalopathies. Here we report the presence of differentially expressed proteins in cerebral malaria in both plasma and cerebrospinal fluid that could be used to better understand pathogenesis and help develop more-specific diagnostic methods. In particular, we report the expression of 2 spectrin proteins that have known Plasmodium falciparum–binding partners involved in the stability of the infected red blood cell, suppressing further invasion and possibly enhancing the red blood cell's ability to sequester in microvasculature.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Berkley JA, Mwangi I, Mellington F, Mwarumba S, Marsh K. Cerebral malaria versus bacterial meningitis in children with impaired consciousness. QJM 1999; 92:151-7.
    • 2. Gwer S, Thuo N, Idro R, et al. Changing trends in incidence and aetiology of childhood acute non-traumatic coma over a period of changing malaria transmission in rural coastal Kenya: a retrospective analysis. BMJ Open 2012; 2:e000475.
    • 3. WHO. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 2000; 94 (Suppl 1):S1-90.
    • 4. Berkley JA, Mwangi I, Ngetsa CJ, et al. Diagnosis of acute bacterial meningitis in children at a district hospital in sub-Saharan Africa. Lancet 2001; 357:1753-7.
    • 5. Gitau EN, Kokwaro GO, Newton CR, Ward SA. Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry. Malar J 2011; 10:205.
    • 6. Bejon P, Berkley JA, Mwangi T, et al. Defining childhood severe falciparum malaria for intervention studies. PLoS Med 2007; 4:e251.
    • 7. Terry DE, Umstot E, Desiderio DM. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J Am Soc Mass Spectrom 2004; 15:784-94.
    • 8. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20:3551-67.
    • 9. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012; 40:D71-5.
    • 10. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis 2006; 6:582-8.
    • 11. Cserti-Gazdewich CM, Dhabangi A, Musoke C, et al. Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. Br J Haematol 2012; 159:223-36.
    • 12. Wassmer SC, Taylor T, Maclennan CA, et al. Platelet-induced clumping of Plasmodium falciparum-infected erythrocytes from Malawian patients with cerebral malaria-possible modulation in vivo by thrombocytopenia. J Infect Dis 2008; 197:72-8.
    • 13. Beesley R, Filteau S, Tomkins A, et al. Impact of acute malaria on plasma concentrations of transferrin receptors. Transactions of the Royal Society of Tropical Medicine and Hygiene 2000; 94:295.
    • 14. Filteau SM, Morris SS, Abbott RA, et al. Influence of morbidity on serum retinol of children in a community-based study in northern Ghana. Am J Clin Nutr 1993; 58:192-7.
    • 15. Berghs S, Aggujaro D, Dirkx R Jr., et al. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol 2000; 151:985-1002.
    • 16. Acharya P, Chaubey S, Grover M, Tatu U. An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS One 2012; 7:e44605.
    • 17. Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 2009; 7:341-54.
    • 18. Oh SS, Voigt S, Fisher D, et al. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol 2000; 108:237-47.
    • 19. Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 2007; 8:182-93.
    • 20. Poppe R, Karbach U, Gambaryan S, et al. Expression of the Na+-Dglucose cotransporter SGLT1 in neurons. J Neurochem 1997; 69:84-94.
    • 21. Xu Y, Hortsman H, Seet L, Wong SH, Hong W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol 2001; 3:658-66.
    • 22. Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis Cartilage 2004; 12:232-8.
    • 23. Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005; 5:3262-77.
    • 24. Schoonenboom NS, Mulder C, Vanderstichele H, et al. Effects of processing and storage conditions on amyloid beta (1-42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem 2005; 51:189-95.
    • 25. Rosenling T, Stoop MP, Smolinska A, et al. The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid. Clin Chem 2011; 57:1703-11.
    • 26. Schuchard MD, Mehigh RJ, Cockrill SL, et al. Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques 2005; 39:239-47.
    • 27. Berven FS, Kroksveen AC, Berle M, et al. Pre-analytical influence on the low molecular weight cerebrospinal fluid proteome. Proteomics Clin Appl 2007; 1:699-711.
    • 28. Ayache S, Panelli M, Marincola FM, Stroncek DF. Effects of storage time and exogenous protease inhibitors on plasma protein levels. Am J Clin Pathol 2006; 126:174-84.
    • 29. Round JE, Sun H. The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Mol Cell Neurosci 2011; 47:265-73.
    • 30. Zencir S, Ovee M, Dobson MJ, Banerjee M, Topcu Z, Mohanty S. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein. Biochem Biophys Res Commun 2011; 411:792-7.
    • 31. Pei X, Guo X, Coppel R, et al. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 2007; 110:1036-42.
    • 32. Lauterbach SB, Coetzer TL. The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar J 2008; 7:161.
    • 33. Shyu WC, Lin SZ, Chiang MF, et al. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest 2008; 118:133-48.
    • 34. Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther 2009; 328:487-95.
    • 35. Rae C, McQuillan JA, Parekh SB, et al. Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. Faseb J 2004; 18:499-510.
    • 36. Brown H, Hien TT, Day N, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25:331-40.
    • 37. Giordano MJ, Mahadeo DK, He YY, Geist RT, Hsu C, Gutmann DH. Increased expression of the neurofibromatosis 1 (NF1) gene product, neurofibromin, in astrocytes in response to cerebral ischemia. J Neurosci Res 1996; 43:246-53.
    • 38. Hegedus B, Yeh TH, Lee da Y, Emnett RJ, Li J, Gutmann DH. Neurofibromin regulates somatic growth through the hypothalamic-pituitary axis. Hum Mol Genet 2008; 17:2956-66.
    • 39. Vallender EJ, Lahn BT. Positive selection on the human genome. Hum Mol Genet 2004; 13 (Spec No 2):R245-54.
    • 40. Tabone MD, Muanza K, Lyagoubi M, et al. The role of interleukin-6 in vitamin A deficiency during Plasmodium falciparum malaria and possible consequences for vitamin A supplementation. Immunology 1992; 75:553-4.
    • 41. Lang B, Newbold CI, Williams G, Peshu N, Marsh K, Newton CR. Antibodies to voltage-gated calcium channels in children with falciparum malaria. J Infect Dis 2005; 191:117-21.
    • 42. Petrenko AG, Ullrich B, Missler M, Krasnoperov V, Rosahl TW, Sudhof TC. Structure and evolution of neurexophilin. J Neurosci 1996; 16:4360-9.
    • 43. Hanissian SH, Frangakis M, Bland MM, Jawahar S, Chatila TA. Expression of a Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, in human T lymphocytes. Regulation of kinase activity by T cell receptor signaling. J Biol Chem 1993; 268:20055-63.
    • 44. Bertagnolo V, Marchisio M, Pierpaoli S, et al. Selective up-regulation of phospholipase C-beta2 during granulocytic differentiation of normal and leukemic hematopoietic progenitors. J Leukoc Biol 2002; 71:957-65.
    • 45. Lackner P, Beer R, Broessner G, et al. Nogo-A expression in the brain of mice with cerebral malaria. PLoS One 2011; 6:e25728.
    • 46. Di Lorenzo A, Manes TD, Davalos A, Wright PL, Sessa WC. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. Blood 2011; 117:2284-95.
    • 47. Nagase T, Kikuno R, Hattori A, Kondo Y, Okumura K, Ohara O. Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 2000; 7:347-55.
    • 48. Okuda T, Kokame K, Miyata T. Differential expression patterns of NDRG family proteins in the central nervous system. J Histochem Cytochem 2008; 56:175-82.
    • 49. Schrimpe AC, Wright DW. Differential gene expression mediated by 15-hydroxyeicosatetraenoic acid in LPS-stimulated RAW 264.7 cells. Malar J 2009; 8:195.
    • 50. Hirata K, Dichek HL, Cioffi JA, et al. Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem 1999; 274:14170-5.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article