LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Astronomical Society
Languages: English
Types: Article
Subjects: star formation [galaxies], QB, Astrophysics - Astrophysics of Galaxies, QC, high-redshift [galaxies], mass function, individual (GRB 130606A, GRB 050904, GRB 140515A) [gamma-ray burst], luminosity function [galaxies]

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Earth and Planetary Astrophysics
Long-duration gamma-ray bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with the deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts z = 5.913 (GRB 130606A), z = 6.295 (GRB 050904), and z = 6.327 (GRB 140515A) in the F140W (wide-JH band, ${\lambda }_{{\rm{obs}}}\sim 1.4\;\mu {\rm{m}}$) filter. The hosts have magnitudes (corrected for Galactic extinction) of ${m}_{{\lambda }_{\mathrm{obs}},\mathrm{AB}}={26.34}_{-0.16}^{+0.14},{27.56}_{-0.22}^{+0.18},$ and ${28.30}_{-0.33}^{+0.25}$, respectively. In all three cases, the probability of chance coincidence of lower redshift galaxies is $\lesssim 2 \% $, indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high-redshift ($z\gt 5$) GRB host galaxies in emission. The galaxies have luminosities in the range 0.1–0.6 ${L}_{z=6}^{* }$ (with ${M}_{1600}^{* }=-20.95\pm 0.12$) and half-light radii in the range 0.6–0.9 ${\rm{kpc}}$. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at $z\sim 6$. Spectroscopic analysis of the GRB afterglows indicate low metallicities ($[{\rm{M/H}}]\lesssim -1$) and low dust extinction (${A}_{{\rm{V}}}\lesssim 0.1$) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxy's luminosity for its possible star-formation history and consider the potential for emission line metallicity determination with the upcoming James Webb Space Telescope.\ud \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adelberger, K. L., Shapley, A. E., Steidel, C. C., et al. 2005, ApJ, 629, 636
    • Basa, S., Cuby, J. G., Savaglio, S., et al. 2012, A&A, 542, A103
    • Berger, E., Chary, R., Cowie, L. L., et al. 2007, ApJ, 665, 102
    • Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
    • Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111
    • Bloom, J. S., Perley, D. A., Li, W., et al. 2009, ApJ, 691, 723
    • Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2010, ApJL, 708, L69
    • Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, ApJ, 803, 34
    • Bradley, L. D., Trenti, M., Oesch, P. A., et al. 2012, ApJ, 760, 108
    • Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
    • Campana, S., Salvaterra, R., Ferrara, A., & Pallottini, A. 2015, A&A, 575, A43
    • Capak, P. L., Carilli, C., Jones, G., et al. 2015, Natur, 522, 455
    • Castro-Tirado, A. J., Sánchez-Ramírez, R., Ellison, S. L., et al. 2013, A&A, submitted (arXiv:1312.5631)
    • Chary, R., Berger, E., & Cowie, L. 2007, ApJ, 671, 272
    • Chornock, R., Berger, E., Fox, D. B., et al. 2013, ApJ, 774, 26
    • Chornock, R., Berger, E., Fox, D. B., et al. 2014, ApJL, submitted (arXiv:1405.7400)
    • Cucchiara, A., Fumagalli, M., Rafelski, M., et al. 2015, ApJ, 804, 51
    • Cucchiara, A., Levan, A. J., Fox, D. B., et al. 2011, ApJ, 736, 7
    • Curtis-Lake, E., McLure, R. J., Dunlop, J. S., et al. 2016, MNRAS, 457, 440
    • de Ugarte Postigo, A., Fynbo, J. P. U., Thöne, C. C., et al. 2012, A&A, 548, A11
    • Duncan, K., & Conselice, C. J. 2015, MNRAS, 451, 2030
    • Dunlop, J. S., McLure, R. J., Robertson, B. E., et al. 2012, MNRAS, 420, 901
    • Eldridge, J. J., & Stanway, E. R. 2009, MNRAS, 400, 1019
    • Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, PASP, 110, 761
    • Finkelstein, S. L., Papovich, C., Ryan, R. E., et al. 2012, ApJ, 758, 93
    • Fong, W., Berger, E., Chornock, R., et al. 2013, ApJ, 769, 56
    • Fruchter, A. S., Levan, A. J., Strolger, L., et al. 2006, Natur, 441, 463
    • Fynbo, J. P. U., Jakobsson, P., Prochaska, J. X., et al. 2009, ApJS, 185, 526
    • Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., & Møller, P. 2008, ApJ, 683, 321
    • González, V., Bouwens, R., Illingworth, G., et al. 2014, ApJ, 781, 34
    • González, V., Bouwens, R. J., Labbé, I., et al. 2012, ApJ, 755, 148
    • Graham, J. F., & Fruchter, A. S. 2013, ApJ, 774, 119
    • Graham, J. F., & Fruchter, A. S. 2015, ApJ, submitted (arXiv:1511.01079)
    • Graham, J. F., Fruchter, A. S., Levesque, E. M., et al. 2015, ApJ, submitted (arXiv:1511.00667)
    • Greiner, J., Fox, D. B., Schady, P., et al. 2015, ApJ, 809, 76
    • Hartoog, O. E., Malesani, D., Fynbo, J. P. U., et al. 2015, A&A, 580, A139
    • Hjorth, J., Malesani, D., Jakobsson, P., et al. 2012, ApJ, 756, 187
    • Jakobsson, P., Hjorth, J., Fynbo, J. P. U., et al. 2004, A&A, 427, 785
    • Jakobsson, P., Hjorth, J., Malesani, D., et al. 2012, ApJ, 752, 62
    • Jakobsson, P., Levan, A., Fynbo, J. P. U., et al. 2006, A&A, 447, 897
    • Kann, D. A., Klose, S., Zhang, B., et al. 2010, ApJ, 720, 1513
    • Kawai, N., Kosugi, G., Aoki, K., et al. 2006, Natur, 440, 184
    • Krühler, T., Malesani, D., Fynbo, J. P. U., et al. 2015, A&A, 581, A125
    • Laskar, T., Zauderer, A., & Berger, E. 2013, GCN, 14817, 1
    • Laskar, T., Zauderer, A., & Berger, E. 2014, GCN, 16283, 1
    • Levesque, E. M., Kewley, L. J., Berger, E., & Zahid, H. J. 2010, AJ, 140, 1557
    • Malhotra, S., Rhoads, J. E., Finkelstein, S. L., et al. 2012, ApJL, 750, L36
    • Melandri, A., Bernardini, M. G., D'Avanzo, P., et al. 2015, A&A, 581, A86
    • Metcalfe, N., Shanks, T., Weilbacher, P. M., et al. 2006, MNRAS, 370, 1257
    • Oesch, P. A., Bouwens, R. J., Carollo, C. M., et al. 2010, ApJL, 725, L150
    • Oesch, P. A., Bouwens, R. J., Illingworth, G. D., et al. 2014, ApJ, 786, 108
    • Oesch, P. A., Bouwens, R. J., Illingworth, G. D., et al. 2015a, ApJ, 808, 104
    • Oesch, P. A., van Dokkum, P. G., Illingworth, G. D., et al. 2015b, ApJL, 804, L30
    • Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713
    • Pei, Y. C. 1992, ApJ, 395, 130
    • Perley, D. A., Levan, A. J., Tanvir, N. R., et al. 2013, ApJ, 778, 128
    • Perley, D. A., Tanvir, N. R., Hjorth, J., et al. 2016, ApJ, 817, 8
    • Pian, E., Mazzali, P. A., Masetti, N., et al. 2006, Natur, 442, 1011
    • Pier, J. R., Munn, J. A., Hindsley, R. B., et al. 2003, AJ, 125, 1559
    • Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, A&A, submitted (arXiv:1502.01589)
    • Racusin, J. L., Karpov, S. V., Sokolowski, M., et al. 2008, Natur, 455, 183
    • Reddy, N. A., & Steidel, C. C. 2009, ApJ, 692, 778
    • Robotham, A. S. G., & Driver, S. P. 2011, MNRAS, 413, 2570
    • Rogers, A. B., McLure, R. J., Dunlop, J. S., et al. 2014, MNRAS, 440, 3714
    • Salvaterra, R., Della Valle, M., Campana, S., et al. 2009, Natur, 461, 1258
    • Schady, P., Dwelly, T., Page, M. J., et al. 2012, A&A, 537, A15
    • Schaerer, D., & de Barros, S. 2009, A&A, 502, 423
    • Schechter, P. 1976, ApJ, 203, 297
    • Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
    • Schmidt, K. B., Treu, T., Trenti, M., et al. 2014, ApJ, 786, 57
    • Schulze, S., Chapman, R., Hjorth, J., et al. 2015, ApJ, 808, 73
    • Stanway, E. R., Eldridge, J. J., & Becker, G. D. 2016, MNRAS, 456, 485
    • Stark, D. P., Richard, J., Charlot, S., et al. 2015, MNRAS, 450, 1846
    • Starling, R. L. C., Willingale, R., Tanvir, N. R., et al. 2013, MNRAS, 431, 3159
    • Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, ApJL, 462, L17
    • Svensson, K. M., Levan, A. J., Tanvir, N. R., Fruchter, A. S., & Strolger, L.-G. 2010, MNRAS, 405, 57
    • Tanvir, N. R., Fox, D. B., Levan, A. J., et al. 2009, Natur, 461, 1254
    • Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2012, ApJ, 754, 46
    • Thöne, C. C., Fynbo, J. P. U., Goldoni, P., et al. 2013, MNRAS, 428, 3590
    • Totani, T., Aoki, K., Hattori, T., et al. 2014, PASJ, 66, 63
    • Totani, T., Kawai, N., Kosugi, G., et al. 2006, PASJ, 58, 485
    • Trenti, M., Perna, R., & Jimenez, R. 2015, ApJ, 802, 103
    • Trenti, M., Perna, R., Levesque, E. M., Shull, J. M., & Stocke, J. T. 2012, ApJL, 749, L38
    • Vergani, S. D., Salvaterra, R., Japelj, J., et al. 2015, A&A, 581, A102
    • Wilkins, S. M., Bunker, A., Coulton, W., et al. 2013, MNRAS, 430, 2885
    • Zafar, T., Watson, D. J., Malesani, D., et al. 2010, A&A, 515, A94
    • Zafar, T., Watson, D. J., Tanvir, N. R., et al. 2011, ApJ, 735, 2
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | NEOGAL
  • EC | EGGS

Related to

  • egiEGI virtual organizations: planck

Cite this article