LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb(-1) of √s = 7TeV proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m(1/2) up to 820GeV are excluded for 10 < tan β < 40.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H. Miyazawa, Baryon Number Changing Currents, Prog. Theor. Phys. 36 (1966) 1266.
    • [2] P. Ramond, Dual Theory for Free Fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].
    • [3] Y. Golfand and E. Likhtman, Extension of the Algebra of Poincar´e Group Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323 [INSPIRE].
    • [4] A. Neveu and J. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].
    • [5] A. Neveu and J. Schwarz, Quark Model of Dual Pions, Phys. Rev. D 4 (1971) 1109 [INSPIRE].
    • [6] J.-L. Gervais and B. Sakita, Field theory interpretation of supergauges in dual models, Nucl. Phys. B 34 (1971) 632 [INSPIRE].
    • [7] D. Volkov and V. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].
    • [8] J. Wess and B. Zumino, A Lagrangian Model Invariant Under Supergauge Transformations, Phys. Lett. B 49 (1974) 52 [INSPIRE].
    • [9] J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].
    • [10] E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [INSPIRE].
    • [11] P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
    • [12] F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].
    • [13] D0 collaboration, V. Abazov et al., Search for R-parity violating supersymmetry via the LLE¯ couplings λ121, λ122 or λ133 in pp¯ collisions at √s = 1.96-TeV, Phys. Lett. B 638 (2006) 441 [hep-ex/0605005] [INSPIRE].
    • [14] CDF collaboration, A. Abulencia et al., Search for anomalous production of multi-lepton events in pp¯ collisions at √s = 1.96-TeV, Phys. Rev. Lett. 98 (2007) 131804 [arXiv:0706.4448] [INSPIRE].
    • [15] CMS collaboration, Search for anomalous production of multilepton events in pp collisions at √s = 7 TeV, JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].
    • [16] Super-Kamiokande collaboration, C. Regis et al., Search for Proton Decay via p− > µ +K0 in Super-Kamiokande I, II and III, Phys. Rev. D 86 (2012) 012006 [arXiv:1205.6538] [INSPIRE].
    • [18] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].
    • [19] G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].
    • [20] P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the Goldstino Couplings and the Neutral Currents, Phys. Lett. B 84 (1979) 416 [INSPIRE].
    • [21] S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].
    • [22] H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].
    • [23] B. Allanach and C. Kom, Lepton number violating mSUGRA and neutrino masses, JHEP 04 (2008) 081 [arXiv:0712.0852] [INSPIRE].
    • [24] J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].
    • [25] K. Desch, S. Fleischmann, P. Wienemann, H. Dreiner and S. Grab, Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data, Phys. Rev. D 83 (2011) 015013 [arXiv:1008.1580] [INSPIRE].
    • [26] B. Allanach, M. Bernhardt, H. Dreiner, C. Kom and P. Richardson, Mass Spectrum in R-Parity Violating mSUGRA and Benchmark Points, Phys. Rev. D 75 (2007) 035002 [hep-ph/0609263] [INSPIRE].
    • [27] Y. Kao and T. Takeuchi, Single-Coupling Bounds on R-parity violating Supersymmetry, an update, arXiv:0910.4980 [INSPIRE].
    • [28] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
    • [29] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
    • [37] M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].
    • [38] A. Kardos, Z. Tro´csa´nyi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].
    • [39] J.M. Campbell and R.K. Ellis, tt¯W +− production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].
    • [40] ATLAS collaboration, Measurement of W γ and Zγ production cross sections in pp collisions at √s = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys. Lett. B 717 (2012) 49 [arXiv:1205.2531] [INSPIRE].
    • [41] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(αs2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
    • [42] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
    • [43] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
    • [44] H.-L. Lai New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
    • [45] M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
    • [46] G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].
    • [47] W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
    • [48] T. Sjo¨strand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    • [49] J. Butterworth, J.R. Forshaw and M. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].
    • [50] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [51] ATLAS collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].
    • [52] ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE].
    • [55] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV, submitted to Eur. Phys. J. C (2011), arXiv:1112.6426 [INSPIRE].
    • [56] ATLAS collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).
    • [57] ATLAS collaboration, Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602] [INSPIRE].
    • [58] ATLAS collaboration, Jet energy resolution and selection efficiency relative to track jets from in-situ techniques with the ATLAS Detector Using Proton-Proton Collisions at a Center of Mass Energy sqrts = 7 TeV, ATLAS-CONF-2010-054 (2010).
    • [59] ATLAS collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063 (2011).
    • [60] ATLAS collaboration, A measurement of the ATLAS muon reconstruction and trigger efficiency using J/psi decays, ATLAS-CONF-2011-021 (2011).
    • [61] ATLAS collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).
    • [62] ATLAS collaboration, b-Jet Tagging Efficiency Calibration using the System8 Method, ATLAS-CONF-2011-143 (2011).
    • [63] ATLAS collaboration, b-jet tagging calibration on c-jets containing D∗+ mesons, ATLAS-CONF-2012-039 (2012).
    • [64] ATLAS collaboration, Measurement of the Mistag Rate with 5 fb1 of Data Collected by the ATLAS Detector, ATLAS-CONF-2012-040 (2012).
    • [65] ATLAS collaboration, Luminosity Determination in pp Collisions at √s = 7 TeV using the ATLAS Detector in 2011, ATLAS-CONF-2011-116 (2011).
    • [66] ATLAS collaboration, Luminosity Determination in pp Collisions at √s = 7 TeV Using the ATLAS Detector at the LHC, Eur. Phys. J. C 71 (2011) 1630 [arXiv:1101.2185] [INSPIRE].
    • [67] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W +W −, W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].
    • [68] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
    • [69] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
    • [70] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].
    • [71] M. Kr¨amer et al., Supersymmetry production cross sections in pp collisions at √s = 7 TeV, arXiv:1206.2892 [INSPIRE].
    • [72] A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].
    • [75] W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].
    • [76] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
    • [77] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
    • [78] M. Botje et al., The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538 [INSPIRE].
    • [79] A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
    • [80] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].
    • [81] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
    • [82] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
    • 1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
    • 2 Physics Department, SUNY Albany, Albany NY, United States of America
    • 3 Department of Physics, University of Alberta, Edmonton AB, Canada
    • 4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
    • 5 LAPP, CNRS/IN2P3 and Universit´e de Savoie, Annecy-le-Vieux, France
    • 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
    • 7 Department of Physics, University of Arizona, Tucson AZ, United States of America
    • 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
    • 9 Physics Department, University of Athens, Athens, Greece
    • 10 Physics Department, National Technical University of Athens, Zografou, Greece
    • 11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
    • 12 Institut de F´ısica d'Altes Energies and Departament de F´ısica de la Universitat Aut`onoma de Barcelona and ICREA, Barcelona, Spain
    • 13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
    • 14 Department for Physics and Technology, University of Bergen, Bergen, Norway
    • 15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
    • 16 Department of Physics, Humboldt University, Berlin, Germany
    • 17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
    • 18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
    • 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
    • 20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Universit`a di Bologna, Bologna, Italy
    • 21 Physikalisches Institut, University of Bonn, Bonn, Germany
    • 22 Department of Physics, Boston University, Boston MA, United States of America
    • 23 Department of Physics, Brandeis University, Waltham MA, United States of America
    • 24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
    • 25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
    • 26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
    • 27 Departamento de F´ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 29 Department of Physics, Carleton University, Ottawa ON, Canada
    • 30 CERN, Geneva, Switzerland
    • 31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
    • 32 (a) Departamento de F´ısica, Pontificia Universidad Cat´olica de Chile, Santiago; (b) Departamento de F´ısica, Universidad T´ecnica Federico Santa Mar´ıa, Valpara´ıso, Chile
    • 33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
    • 34 Laboratoire de Physique Corpusculaire, Clermont Universit´e and Universit´e Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
    • 36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Universit`a della Calabria, Arcavata di Rende, Italy
    • 38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
    • 39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
    • 40 Physics Department, Southern Methodist University, Dallas TX, United States of America
    • 41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
    • 42 DESY, Hamburg and Zeuthen, Germany
    • 43 Institut fu¨r Experimentelle Physik IV, Technische Universit¨at Dortmund, Dortmund, Germany
    • 44 Institut fu¨r Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
    • 45 Department of Physics, Duke University, Durham NC, United States of America
    • 46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 48 Fakult¨at fu¨r Mathematik und Physik, Albert-Ludwigs-Universita¨t, Freiburg, Germany
    • 49 Section de Physique, Universit´e de Gen`eve, Geneva, Switzerland
    • 50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universit`a di Genova, Genova, Italy
    • 51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 52 II Physikalisches Institut, Justus-Liebig-Universit¨at Giessen, Giessen, Germany
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Related to

  • egiEGI virtual organizations: atlas

Cite this article