LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: MDPI
Journal: Remote Sensing
Languages: English
Types: Article
Subjects: SBAS-DInSAR, DOAJ:Earth and Environmental Sciences, InSAR, G, Geography. Anthropology. Recreation, Geography (General), coal mine, Q, DOAJ:Geography, satellite-based SAR, Science, phase gradient, G1-922, 4-D TomoSAR, Detectable Deformation Gradient (DDG)
Identifiers:doi:10.3390/rs6021476
Interferometric Synthetic Aperture Radar (InSAR) and Differential Interferometric Synthetic Aperture Radar (DInSAR) have shown numerous applications for subsidence monitoring. In the past 10 years, the Persistent Scatterer InSAR (PSI) and Small BAseline Subset (SBAS) approaches were developed to overcome the problem of decorrelation and atmospheric effects, which are common in interferograms. However, DInSAR or PSI applications in rural areas, especially in mountainous regions, can be extremely challenging. In this study we have employed a combined technique, i.e., SBAS-DInSAR, to a mountainous area that is severely affected by mining activities. In addition, L-band (ALOS) and C-band (ENVISAT) data sets, 21 TerraSAR-X images provided by German Aerospace Center (DLR) with a high resolution have been used. In order to evaluate the ability of TerraSAR-X for mining monitoring, we present a case study of TerraSAR-X SAR images for Subsidence Hazard Boundary (SHB) extraction. The resulting data analysis gives an initial evaluation of InSAR applications within a mountainous region where fast movements and big phase gradients are common. Moreover, the experiment of four-dimension (4-D) Tomography SAR (TomoSAR) for structure monitoring inside the mining area indicates a potential near all-wave monitoring, which is an extension of conventional InSAR.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, doi:10.1088/0266-5611/14/4/001.
    • 2. Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci. 2007, 339, 289-302.
    • 3. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci. Remote Sens. 2002, 40, 2375-2383.
    • 4. Lanari, R.; Lundgren, P.; Manzo, M.; Casu, F. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys. Res. Lett. 2004, 31, doi:10.1029/2004GL021294.
    • 5. Lu, Z.; Rykhus, R.; Masterlark, T.; Dean, K.G. Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sens. Environ. 2004, 91, 345-353.
    • 6. Colesanti, C.; Mouelic, S.L.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the Permanent Scatterers technique-A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201-207.
    • 7. Perski, Z.; Jura, D. ERS SAR interferometry for land subsidence detection in coal mining areas. Earth Obs. Q. 1999, 63, 25-29.
    • 8. Raucoules, D.; Bourgine, B.; de Michele, M.; Le Cozanet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M. Persistent Scatterers Interferometry Independent Validation and Intercomparison of Results-Final Report; BRGM/RP-55649-FR; ESA: Frascati, Italy, 2007.
    • 9. Cao, L.; Zhang, Y. Coal mine land subsidence monitoring by using spaceborne insar data: A case study in fengfeng, hebei province, China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 255-261.
    • 10. Leighton, J.; Sowter, A.; Tragheim, D.; Bingley, R.; Teferle, F. Land motion in the urban area of Nottingham observed by ENVISAT-1. Int. J. Remote Sens. 2013, 34, 982-1003.
    • 11. Liu, Z.; Bian, Z.; Lv, F.; Dong, B. Monitoring on subsidence due to repeated excavation with DInSAR technology. Int. J. Min. Sci. Technol. 2013, 23, 173-178.
    • 12. Sowter, A. Orthorectification and interpretation of differential InSAR data over mountainous areas: A case study of the May 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3435-3448.
    • 13. Kampes, B.; Usai, S. Doris: The Delft Object-Oriented Radar Interferometric Software. In Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16-20 August 1999.
    • 14. Osmanoğlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1-12.
    • 15. Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, doi:10.1029/2006JB004763.
    • 16. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, doi:10.1029/2005RG000183.
    • 17. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035-4038.
    • 18. Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. JOSA A 2000, 17, 401-414.
    • 19. Geng, J.; Teferle, F.; Shi, C.; Meng, X.; Dodson, A.; Liu, J. Ambiguity resolution in precise point positioning with hourly data. GPS Solut. 2009, 13, 263-270.
    • 20. He, G. Mining Subsidence; CUMT Publisher: Xuzhou, China, 1991. (In Chinese)
    • 21. Fornaro, G.; Serafino, F. Imaging of single and double scatterers in urban areas via SAR tomography. IEEE Trans Geosci. Remote Sens. 2006, 44, 3497-3505.
    • 22. Fornaro, G.; Reale, D.; Verde, S. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci. Romote Sens. Lett. 2013, 10, 677-681.
    • 23. Zhu, X.X.; Bamler, R. Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4296-4308.
    • 24. Reale, D.; Fornaro, G.; Pauciullo, A.; Zhu, X.; Bamler, R. Tomographic imaging and monitoring of buildings with very high resolution SAR data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 661-665.
    • 25. Zhu, X.X.; Bamler, R. Tomographic SAR Inversion by L1 Norm Regularization-The compressive sensing approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839-3846.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.