LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer
Languages: English
Types: Article
Z' anything, Z' --> tau+ tau-, coupling [fermion], Exotics, Hadron-Hadron Scattering, :Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP], acceptance, Física, Science & Technology, :Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], Settore FIS/01 - Fisica Sperimentale, branching ratio: upper limit [channel cross section], colliding beams [p p], High-Mass Resonances, 530 Physics, Hadron-Hadron Scattering; Nuclear and High Energy Physics--> Subjects: scattering [p p], mass: lower limit [resonance], Particle Physics - Experiment, ATLAS, Proton-Proton Collisions, 530, High Energy Physics - Experiment, Settore FIS/04 - Fisica Nucleare e Subnucleare, model [Z'], leptonic decay [resonance], CERN LHC Coll, pair production [tau], 8000 GeV-cms, Experimental results, 3 [family], p p --> Z' anything, Z' --> tau+ tau-, coupling [fermion], Exotics, Hadron-Hadron Scattering, :Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP], acceptance, Física, Science & Technology, :Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], Settore FIS/01 - Fisica Sperimentale, branching ratio: upper limit [channel cross section], colliding beams [p p], High-Mass Resonances, 530 Physics, Hadron-Hadron Scattering; Nuclear and High Energy Physics
ddc: ddc:500.2, ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment
A search for high-mass resonances decaying into $\tau^{+}\tau^{-}$ final states using proton-proton collisions at $\sqrt{s}= 8$ TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5-20.3 fb$^{-1}$.  No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of $Z^{\prime}$ resonances decaying into $\tau^+\tau^-$ pairs as a function of the resonance mass.  As a result, $Z^{\prime}$ bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the $Z^{\prime}$ acceptance is investigated and limits are also placed on a $Z^{\prime}$ model that exhibits enhanced couplings to third-generation fermions. A search for high-mass resonances decaying into τ$^{+}$ τ$^{−}$ final states using proton-proton collisions at $ \sqrt{s}=8 $ TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5–20.3 fb$^{−1}$. No statistically significant excess above the Standard Model expectation is observed, 95% credibility upper limits are set on the cross section times branching fraction of Z′ resonances decaying into τ$^{+}$ τ$^{−}$ pairs as a function of the resonance mass. As a result, Z′ bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the Z′ acceptance is investigated and limits are also placed on a Z′ model that exhibits enhanced couplings to third-generation fermions. A search for high-mass resonances decaying into $\tau^{+}\tau^{-}$ final states using proton-proton collisions at $\sqrt{s}= 8$ TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5-20.3 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of $Z^{\prime}$ resonances decaying into $\tau^+\tau^-$ pairs as a function of the resonance mass. As a result, $Z^{\prime}$ bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the $Z^{\prime}$ acceptance is investigated and limits are also placed on a $Z^{\prime}$ model that exhibits enhanced couplings to third-generation fermions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].
    • [2] M. Cvetiˇc and S. Godfrey, Discovery and identification of extra gauge bosons, hep-ph/9504216 [INSPIRE].
    • [3] A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [INSPIRE].
    • [4] T.G. Rizzo, Z′ phenomenology and the LHC, hep-ph/0610104 [INSPIRE].
    • [5] R. Diener, S. Godfrey and T.A.W. Martin, Unravelling an extra neutral gauge boson at the LHC using third generation fermions, Phys. Rev. D 83 (2011) 115008 [arXiv:1006.2845] [INSPIRE].
    • [6] P. Langacker, The physics of heavy Z′ gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
    • [8] E. Malkawi, T.M.P. Tait and C.P. Yuan, A model of strong flavor dynamics for the top quark, Phys. Lett. B 385 (1996) 304 [hep-ph/9603349] [INSPIRE].
    • [9] H.D. Kim, S.-G. Kim and S. Shin, D0 dimuon charge asymmetry from Bs system with Z′ couplings and the recent LHCb result, Phys. Rev. D 88 (2013) 015005 [arXiv:1205.6481] [INSPIRE].
    • [10] D0 collaboration, V.M. Abazov et al., Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb−1 of pp¯ collisions, Phys. Rev. D 84 (2011) 052007 [arXiv:1106.6308] [INSPIRE].
    • [11] X.-G. He and G. Valencia, B decays with τ leptons in nonuniversal left-right models, Phys. Rev. D 87 (2013) 014014 [arXiv:1211.0348] [INSPIRE].
    • [12] Belle collaboration, A. Bozek et al., Observation of B+ → D∗0τ +ντ and evidence for B+ → D0τ +ντ at Belle, Phys. Rev. D 82 (2010) 072005 [arXiv:1005.2302] [INSPIRE].
    • [13] BaBar collaboration, J.P. Lees et al., Evidence for an excess of B¯ → D(∗)τ −ν¯τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
    • [14] E. Dudas, C. Petersson and R. Torre, Collider signatures of low scale supersymmetry breaking: a Snowmass 2013 white paper, arXiv:1309.1179 [INSPIRE].
    • [15] C. Petersson, A. Romagnoni and R. Torre, Liberating Higgs couplings in supersymmetry, Phys. Rev. D 87 (2013) 013008 [arXiv:1211.2114] [INSPIRE].
    • [16] V. Barger, D. Marfatia and A. Peterson, LHC and dark matter signals of Z′ bosons, Phys. Rev. D 87 (2013) 015026 [arXiv:1206.6649] [INSPIRE].
    • [17] A. Hayreter and G. Valencia, Constraining τ -lepton dipole moments and gluon couplings at the LHC, Phys. Rev. D 88 (2013) 013015 [Erratum ibid. D 91 (2015) 099902] [arXiv:1305.6833] [INSPIRE].
    • [18] L. Evans and P. Bryant, LHC machine, 2008 JINST 3 S08001 [INSPIRE].
    • [26] R.S. Chivukula and E.H. Simmons, Electroweak limits on nonuniversal Z′ bosons, Phys. Rev. D 66 (2002) 015006 [hep-ph/0205064] [INSPIRE].
    • [27] Q.-H. Cao, Z. Li, J.-H. Yu and C.P. Yuan, Discovery and identification of W ′ and Z′ in SU(2) × SU(2) × U(1) models at the LHC, Phys. Rev. D 86 (2012) 095010 [arXiv:1205.3769] [INSPIRE].
    • [28] K.Y. Lee, Lepton flavour violation in a nonuniversal gauge interaction model, Phys. Rev. D 82 (2010) 097701 [arXiv:1009.0104] [INSPIRE].
    • [29] K.Y. Lee, Unitarity of the CKM matrix in a nonuniversal gauge interaction model, Phys. Rev. D 71 (2005) 115008 [hep-ph/0410381] [INSPIRE].
    • [30] ATLAS collaboration, Performance of the ATLAS trigger system in 2010, Eur. Phys. J. C 72 (2012) 1849 [arXiv:1110.1530] [INSPIRE].
    • [31] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
    • [32] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
    • [33] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
    • [34] S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].
    • [35] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].
    • [36] B.P. Kersevan and E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1, Comput. Phys. Commun. 184 (2013) 919 [hep-ph/0405247] [INSPIRE].
    • [43] J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].
    • [44] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was and Z. Was, Universal interface of TAUOLA technical and physics documentation, Comput. Phys. Commun. 183 (2012) 821 [arXiv:1002.0543] [INSPIRE].
    • [45] P. Ilten, Tau decays in PYTHIA 8, Nucl. Phys. Proc. Suppl. 253-255 (2014) 77 [arXiv:1211.6730] [INSPIRE].
    • [46] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
    • [47] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
    • [48] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
    • [49] ATLAS collaboration, New ATLAS event generator tunes to 2010 data, ATL-PHYS-PUB-2011-008, CERN, Geneva Switzerland (2011).
    • [50] Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].
    • [51] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
    • [52] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(αs2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
    • [53] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
    • [54] S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [INSPIRE].
    • [55] U. Langenfeld, S. Moch and P. Uwer, New results for tt¯ production at hadron colliders, arXiv:0907.2527 [INSPIRE].
    • [56] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].
    • [57] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].
    • [58] N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE].
    • [59] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
    • [60] Z. Czyczula, T. Przedzinski and Z. Was, TauSpinner program for studies on spin effect in tau production at the LHC, Eur. Phys. J. C 72 (2012) 1988 [arXiv:1201.0117] [INSPIRE].
    • [61] A. Kaczmarska, J. Piatlicki, T. Przedzinski, E. Richter-Was and Z. Was, Application of TauSpinner for studies on τ -lepton polarization and spin correlations in Z, W and H decays at the LHC, Acta Phys. Polon. B 45 (2014) 1921 [arXiv:1402.2068] [INSPIRE].
    • [63] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [64] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].
    • [65] ATLAS collaboration, ATLAS tunes of PYTHIA 6 and PYTHIA 8 for M C11, ATL-PHYS-PUB-2011-009, CERN, Geneva Switzerland (2011).
    • [66] ATLAS collaboration, Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at √s = 8 TeV, Eur. Phys. J. C 75 (2015) 303 [arXiv:1412.7086] [INSPIRE].
    • [67] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
    • [68] M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
    • [69] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE].
    • [70] ATLAS collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 3130 [arXiv:1407.3935] [INSPIRE].
    • [71] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE].
    • [83] R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].
    • [85] A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].
    • 1 Department of Physics, University of Adelaide, Adelaide, Australia
    • 2 Physics Department, SUNY Albany, Albany NY, United States of America
    • 3 Department of Physics, University of Alberta, Edmonton AB, Canada
    • 4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
    • 5 LAPP, CNRS/IN2P3 and Universit´e de Savoie, Annecy-le-Vieux, France
    • 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
    • 7 Department of Physics, University of Arizona, Tucson AZ, United States of America
    • 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
    • 9 Physics Department, University of Athens, Athens, Greece
    • 10 Physics Department, National Technical University of Athens, Zografou, Greece
    • 11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
    • 12 Institut de F´ısica d'Altes Energies and Departament de F´ısica de la Universitat Aut`onoma de Barcelona, Barcelona, Spain
    • 13 Institute of Physics, University of Belgrade, Belgrade, Serbia
    • 14 Department for Physics and Technology, University of Bergen, Bergen, Norway
    • 15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
    • 16 Department of Physics, Humboldt University, Berlin, Germany
    • 17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
    • 18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
    • 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
    • 20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita` di Bologna, Bologna, Italy
    • 21 Physikalisches Institut, University of Bonn, Bonn, Germany
    • 22 Department of Physics, Boston University, Boston MA, United States of America
    • 23 Department of Physics, Brandeis University, Waltham MA, United States of America
    • 24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
    • 25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
    • 26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
    • 27 Departamento de F´ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 29 Department of Physics, Carleton University, Ottawa ON, Canada
    • 30 CERN, Geneva, Switzerland
    • 31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
    • 32 (a) Departamento de F´ısica, Pontificia Universidad Cato´lica de Chile, Santiago; (b) Departamento de F´ısica, Universidad T´ecnica Federico Santa Mar´ıa, Valpara´ıso, Chile
    • 33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
    • 34 Laboratoire de Physique Corpusculaire, Clermont Universit´e and Universit´e Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
    • 36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita` della Calabria, Rende, Italy
    • 38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
    • 39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
    • 40 Physics Department, Southern Methodist University, Dallas TX, United States of America
    • 41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
    • 42 DESY, Hamburg and Zeuthen, Germany
    • 43 Institut fu¨r Experimentelle Physik IV, Technische Universita¨t Dortmund, Dortmund, Germany
    • 44 Institut fu¨r Kern- und Teilchenphysik, Technische Universita¨t Dresden, Dresden, Germany
    • 45 Department of Physics, Duke University, Durham NC, United States of America
    • 46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 48 Fakulta¨t fu¨r Mathematik und Physik, Albert-Ludwigs-Universita¨t, Freiburg, Germany
    • 49 Section de Physique, Universit´e de Gen`eve, Geneva, Switzerland
    • 50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita` di Genova, Genova, Italy
    • 51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 52 II Physikalisches Institut, Justus-Liebig-Universita¨t Giessen, Giessen, Germany
    • 53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 54 II Physikalisches Institut, Georg-August-Universit¨at, Go¨ttingen, Germany
    • 55 Laboratoire de Physique Subatomique et de Cosmologie, Universit´e Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
    • 56 Department of Physics, Hampton University, Hampton VA, United States of America
    • 57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
    • 58 (a) Kirchhoff-Institut fu¨r Physik, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg; (c) ZITI Institut fu¨r technische Informatik, Ruprecht-Karls-Universita¨t Heidelberg, Mannheim, Germany
    • 59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
    • 103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
    • 104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita` di Napoli, Napoli, Italy
    • 105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
    • 106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
    • 107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
    • 108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
    • 109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
    • 110 Department of Physics, New York University, New York NY, United States of America
    • 111 Ohio State University, Columbus OH, United States of America
    • 112 Faculty of Science, Okayama University, Okayama, Japan
    • 113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
    • 114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
    • 115 Palack´y University, RCPTM, Olomouc, Czech Republic
    • 116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
    • 117 LAL, Universit´e Paris-Sud and CNRS/IN2P3, Orsay, France
    • 118 Graduate School of Science, Osaka University, Osaka, Japan
    • 119 Department of Physics, University of Oslo, Oslo, Norway
    • 120 Department of Physics, Oxford University, Oxford, United Kingdom
    • 121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita` di Pavia, Pavia, Italy
    • 122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
    • 123 Petersburg Nuclear Physics Institute, Gatchina, Russia
    • 124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita` di Pisa, Pisa, Italy
    • 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
    • 126 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciˆencias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F´ısica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
    • 127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
    • 128 Czech Technical University in Prague, Praha, Czech Republic
    • 129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
    • 130 State Research Center Institute for High Energy Physics, Protvino, Russia
    • 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
    • 132 Ritsumeikan University, Kusatsu, Shiga, Japan
    • 133 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita` di Roma, Roma, Italy
    • 134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita` di Roma Tor Vergata, Roma, Italy
    • 135 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita` Roma Tre, Roma, Italy
    • 136 (a) Facult´e des Sciences Ain Chock, R´eseau Universitaire de Physique des Hautes Energies - Universit´e Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Facult´e des Sciences Semlalia, Universit´e Cadi Ayyad, LPHEA-Marrakech; (d) Facult´e des Sciences, Universit´e Mohamed Premier and LPTPM, Oujda; (e) Facult´e des sciences, Universit´e Mohammed V-Agdal, Rabat, Morocco
    • 137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a` l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • SNSF | Teilchenphysik-Experimente...
  • EC | EPLANET

Related to

  • egiEGI virtual organizations: atlas
  • egiEGI virtual organizations: cms

Cite this article