LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Lancet Publishing Group
Languages: English
Types: Article
Subjects: RC
Background:\ud Mechanical chest compression devices have the potential to help maintain high-quality cardiopulmonary resuscitation (CPR), but despite their increasing use, little evidence exists for their effectiveness. We aimed to study whether the introduction of LUCAS-2 mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest.\ud Methods:\ud The pre-hospital randomised assessment of a mechanical compression device in cardiac arrest (PARAMEDIC) trial was a pragmatic, cluster-randomised open-label trial including adults with non-traumatic, out-of-hospital cardiac arrest from four UK Ambulance Services (West Midlands, North East England, Wales, South Central). 91 urban and semi-urban ambulance stations were selected for participation. Clusters were ambulance service vehicles, which were randomly assigned (1:2) to LUCAS-2 or manual CPR. Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. The primary outcome was survival at 30 days following cardiac arrest and was analysed by intention to treat. Ambulance dispatch staff and those collecting the primary outcome were masked to treatment allocation. Masking of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. The study is registered with Current Controlled Trials, number ISRCTN08233942.\ud Findings:\ud We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 group, 2819 assigned to the control group) between April 15, 2010 and June 10, 2013. 985 (60%) patients in the LUCAS-2 group received mechanical chest compression, and 11 (<1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30 day survival was similar in the LUCAS-2 group (104 [6%] of 1652 patients) and in the manual CPR group (193 [7%] of 2819 patients; adjusted odds ratio [OR] 0·86, 95% CI 0·64—1·15). No serious adverse events were noted. Seven clinical adverse events were reported in the LUCAS-2 group (three patients with chest bruising, two with chest lacerations, and two with blood in mouth). 15 device incidents occurred during operational use. No adverse or serious adverse events were reported in the manual group.\ud Interpretation:\ud We noted no evidence of improvement in 30 day survival with LUCAS-2 compared with manual compressions. On the basis of ours and other recent randomised trials, widespread adoption of mechanical CPR devices for routine use does not improve survival.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 2014; 129: e28-e292.
    • 2 Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005; 67: 75-80.
    • 3 Perkins GD, Cooke MW. Variability in cardiac arrest survival: the Ambulance Service Quality Indicators. Emerg Med J 2012; 29: 3-5.
    • 4 Wang HE, Devlin SM, Sears GK, et al. Regional variations in early and late survival after out-of-hospital cardiac arrest. Resuscitation 2012; 83: 1343-48.
    • 5 Vadeboncoeur T, Stolz U, Panchal A, et al. Chest compression depth and survival in out-of-hospital cardiac arrest. Resuscitation 2014; 85: 182-88.
    • 6 Idris AH, Guffey D, Aufderheide TP, et al. Relationship between chest compression rates and outcomes from cardiac arrest. Circulation 2012; 125: 3004-12.
    • 7 Zuercher M, Hilwig RW, Ranger-Moore J, et al. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med 2010; 38: 1141-46.
    • 8 Christenson J, Andrusiek D, Everson-Stewart S, et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 2009; 120: 1241-47.
    • 9 Krarup NH, Terkelsen CJ, Johnsen SP, et al. Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest is hampered by interruptions in chest compressions-a nationwide prospective feasibility study. Resuscitation 2011; 82: 263-69.
    • 10 Hallstrom A, Rea TD, Sayre MR, et al. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA 2006; 295: 2620-28.
    • 11 Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev 2014; 2: CD007260.
    • 12 Wik L, Olsen JA, Persse D, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation 2014; 85: 741-48.
    • 13 Rubertsson S, Lindgren E, Smekal D, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA 2014; 311: 53-61.
    • 14 Perkins GD, Woollard M, Cooke MW, et al. Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol. Scand J Trauma Resusc Emerg Med 2010; 18: 58.
    • 15 Koster RW, Baubin MA, Bossaert LL, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 2010; 81: 1277-92.
    • 16 Deakin CD, Nolan JP, Soar J, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 2010; 81: 1305-52.
    • 17 Jacobs I, Nadkarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation 2004; 63: 233-49.
    • 18 Dunn G, Maracy M, Dowrick C, et al. Estimating psychological treatment effects from a randomised controlled trial with both non-compliance and loss to follow-up. Br J Psychiatry 2003; 183: 323-31.
    • 19 Hewitt CE, Torgerson DJ, Miles JN. Is there another way to take account of noncompliance in randomized controlled trials? CMAJ 2006; 175: 347.
    • 20 Smekal D, Johansson J, Huzevka T, Rubertsson S. A pilot study of mechanical chest compressions with the LUCAS™ device in cardiopulmonary resuscitation. Resuscitation 2011; 82: 702-06.
    • 21 Deakin CD, King P, Thompson F. Prehospital advanced airway management by ambulance technicians and paramedics: is clinical practice sufficient to maintain skills? Emerg Med J 2009; 26: 888-91.
    • 22 Ong ME, Annathurai A, Shahidah A, et al. Cardiopulmonary resuscitation interruptions with use of a load-distributing band device during emergency department cardiac arrest. Ann Emerg Med 2010; 56: 233-41.
    • 23 Yeung J, Meeks R, Edelson D, Gao F, Soar J, Perkins GD. The use of CPR feedback/prompt devices during training and CPR performance: a systematic review. Resuscitation 2009; 80: 743-51.
    • 24 Nolan JP, Hazinski MF, Billi JE, et al. Part 1: executive summary: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2010; 81 (suppl 1): e1-25.
    • 25 Perkins GD, Cottrell P, Gates S. Is adrenaline safe and effective as a treatment for out of hospital cardiac arrest? BMJ 2014; 348: g2435.
    • 26 Stiell IG, Nichol G, Leroux BG, et al. Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest. N Engl J Med 2011; 365: 787-97.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article