Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QD
The biaryl motif is found in many natural and synthetic products that display a wide range of biological activities. This explains why biphenyls are widely encountered in medicinal chemistry as a privileged scaffold. The palladium-catalysed Suzuki-Miyaura (SM) coupling is one of the most important and efficient strategies for the synthesis of symmetrical and unsymmetrical biaryl compounds; the arylboronic acid or ester is a key partner in this coupling reaction.\ud This work presents the synthesis of a library of new molecules containing the biphenyl scaffold; o-, m- and p-(bromomethyl)phenylboronic acid pinacol esters, 2a-c, were selected as coupling partners. Nucleophilic substitution of the bromide was carried out with amine, thiol, alcohol or phenol nucleophiles. Supported reagents and microwave assisted organic synthesis conditions were employed to enhance this chemistry and made it amenable to parallel synthesis. The resulting arylboronates were used in SM coupling reactions in order to obtain a range of biphenyls.\ud The use of Boc-piperazine as a nucleophile in the SN2 reaction, with 2a-c, and 1-bromo-, 2-, 3- or 4-nitrobenzene or 2-bromo-5-nitropyridine as aryl halides in the SM coupling reaction, allowed two other points of functionalisation to be added to the biaryl motif.\ud The conditions for the SM coupling of mercaptomethylphenylboronic esters and orthosubstituted methylphenylboronic esters were optimised in order to broaden the scope of the biaryl library.\ud Phosphines were found to be good nucleophiles in the SN2 reaction with 2a-c. A Wittig reaction was performed with the resulting phosphonium arylboronates in order to synthesise arylboronic esters containing an alkene function prior the reduction of the resulting double bond of the stilbene derivatives and realising a SM coupling to synthesise arylethylbiphenyls.\ud The stilbene derivatives were also synthesised by using the olefin cross-metathesis reaction of 4-vinylphenylboronic acid pinacol ester.\ud A solid state crystallographic study was undertaken on a small library of methylbiphenylamides to compare the crystal structures of isomers or biphenyls with different functional groups.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Microwave-Mediated Synthesis of an Arylboronate Library. Spencer, J.; Baltus, C. B.; Patel, H.; Press, N. J.; Callear, S. K.; Male, L.; Coles, S. J. ACS Comb. Sci. 2011, 13, 24- 31.
    • Synthesis of a (piperazin-1-ylmethyl)biaryl library via microwave-mediated SuzukiMiyaura cross-couplings. Spencer, J.; Baltus, C. B.; Press, N. J.; Harrington, R. W.; Clegg, W. Tetrahedron Lett. 2011, 52, 3963-3968.
    • (1) Szmant, H. H. Organic Building Blocks of the Chemical Industry; Wiley: New York, 1989.
    • (2) Schelberger, K.; Scherer, M.; Eicken, K.; Hampel, M.; Ammermann, E.; Lorenz, G.; Strathmann, S. WO 99/31984, BASF Aktiengesellschaft (US 6,569,875 B1, 2003).
    • (3) (a) Parsons, A. S.; Garcia, J. M.; Snieckus, V. Tetrahedron Lett.
    • 1994, 35, 7537-7540. (b) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am.
    • Chem. Soc. 1998, 120, 9722-9723. (c) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. J. Org. Chem. 2000, 65, 3326-3333. (d) Costa, A. M.; Jimeno, C.; Gavenonis, J.; Carroll, P. J.; Walsh, P. J. J. Am. Chem.
    • Soc. 2002, 124, 6929-6941. (e) Wakamatsu, H.; Blechert, S. Angew.
    • Chem., Int. Ed. 2002, 41, 2403-2405. (f) Walsh, P. J.; Lurain, A. E.; Balsells J. Chem. Rev. 2003, 103, 3297-3344. (g) Hua, Z.; Vassar, V. C.; Ojima, I. Org. Lett. 2003, 5, 3831-3834. (h) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130 (41), 13552- 13554. (i) Wang, Q.; Xiang, L.; Song, H.; Zi, G. Inorg. Chem. 2008, 47, 4319-4328.
    • (4) (a) Poetsh, E. Kontakte (Darmstadt), 1988, 15. (b) Coco, S.; Cordovilla, C.; Espinet, P.; Martin-Alvarez, J.; Mun~oz, P. Inorg. Chem.
    • 2006, 45, 10180-10187. (c) Keith, C.; Dantlgraber, G.; Reddy, r. A.; Baumeister, U.; Tschierske, C. Chem. Mater. 2007, 19, 694-710.
    • (d) Montani, R. S.; Hegguilustoy, C. M.; Del Rosso, P. G.; Donnio, B.; Guillon, D.; Garay, R. O. Tetrahedron Lett. 2009, 50, 5231-5234.
    • (5) (a) Elsenbaumer, R. L.; Shacklette, L. W. Handbook of Conducting Polymers, Skotheim, T. A., Ed.; Marcel Dekker: New York, 1986, Vol. 1. (b) Wallon, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411-7412. (c) Step Growth Polymers for High-Performance Materials; ACS Symp. Ser. 624, Hedrick, J. L., Labadie, J. W., Eds.; American Chemical Society: Washington, DC, 1996.
    • (6) (a) Bringmann, G.; Gunther, C.; Ochse, M.; Schupp, O.; Tasler, S. In Progress in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: New York, 2001, Vol. 82, pp 1-293. (b) Pavia, M. R.; Cohen, M. P.; Dilley, G. J.; Dubuc, G. R.; Durgin, T. L.; Forman, F. W.; Hediger, M. E.; Milot, G.; Powers, T. S.; Sucholeiki, I.; Zhou, S.; Hangauer, D. G. Bioorg. Med. Chem. 1996, 4, 659-666.
    • (7) (a) Wexler, R. R.; Greenlee, W. J.; Irvin, J. D.; Goldberg, M. R.; Prendergast, K.; Smith, R. D.; Timmermans, P. B. M. W. M. J. Med.
    • Chem. 1996, 39, 625-656. (b) Lantry, L. E.; Zang, Z.; Yao, R.; Crist, K. A.; Wang, Y.; Ohkanda, J.; Hamilton, A. D.; Sebti, S. M.; Lubet, R. A.; You, M. Carcinogenesis 2000, 21, 113-116. (c) de Souza1, A. O.; Hemerly1, F. P.; Busollo, A. C.; Melo, P. S.; Machado, G. M. C.; Miranda, C. C.; Santa-Rita, R. M.; Haun, M.; Leon, L. L.; Sato, D. N.; de Castro, S. L.; Duran, N. J. Antimicrob. Chemother. 2002, 50, 629-637.
    • (d) Mdee, L. K.; Yeboah, S. O.; Abegaz, B. M. J. Nat. Prod. 2003, 66, 599-604. (e) Zupancic, S.; Pecavar, A.; Zupet, R. WO 2006/058701 A1, A Process for the Synthesis of Valsartan, 2006. (f) Setti, E. L.; Venkatraman, S.; Palmer, J. T.; Xie, X.; Cheung, H.; Yu, W.; Wesolowski, G.; Robichaud, J. Bioorg. Med. Chem. Lett. 2006, 16, 4296-4299.
    • (g) Severinsen, R.; Bourne, G. T.; Tran, T. T.; Ankersen, M.; Begtrup, M.; Smythe, M. L. J. Comb. Chem. 2008, 10, 557-566 and references cited therein. (h) Mihigo, S. O.; Mammob, W.; Bezabih, M.; AndraeMarobela, K.; Abegaz, B. M. Bioorg. Med. Chem. 2010, 18, 2464-2473.
    • (8) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
    • (b) Suzuki, A. In Metal-Catalysed Cross-Coupling Reactions, Diederich, F., Stang, P. J. Eds.; Wiley-VCH: Weinheim, 1997. (c) Boronic Acids; Hall, D. Ed.; Wiley VCH: Weinheim, 2005, and references cited therein.
    • (9) (a) Spencer, J.; Burd, A. P.; Adatia, T.; Goodwin, C. A.; Merette, S. A. M.; Scully, M. F.; Deadman, J. J. Tetrahedron 2002, 58, 1551-1556.
    • (b) Holland, R.; Spencer, J.; Deadman, J. J. Synthesis 2002, 2379-2382.
    • (c) Schultz, M. J; Coats, S. J.; Hlasta, D. J. Org. Lett. 2004, 6, 3265-3268.
    • (10) A complementary approach involved the derivitization of bromomethyl aryl halides prior to reaction with commercially available arylboronic acids: (a) Organ, M. G.; Arvanitis, E. A.; Dixon, C. E.; Lavorato, D. J. J. Comb. Chem. 2001, 3, 473-476. (b) Tan, W.; Zhang, D.; Zhu, D. Bioorg. Med. Chem. Lett. 2007, 17, 2629-2633.
    • (11) (a) Deadman, J. J.; Spencer, J.; Greenidge, P. A.; Goodwin, C. A.; Kaakar, V. J.; Scully, M. F. Serine Protease Inhibitors Comprising a Hydrogen-Bond Acceptor; WO 02057273; Trigen Ltd, 2002 and references cited. (b) Lazarova, T. I.; Jin, L.; Rynkiewicz, M.; Gorga, J. C.; Bibbins, F.; Meyers, H. V.; Babine, R.; Strickler Bioorg. Med. Chem. Lett.
    • 2006, 16, 5022-5027and references cited therein.
    • (12) (a) Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582-9584.
    • 1999, 64, 3885-3890. (c) Leadbeater, N.; Marco, M. J. Org. Chem. 2003, 68, 888-892. (d) Spencer, J.; Rathnam, R. P.; Patel, H.; Nazira, A.
    • Tetrahedron 2008, 64, 10195-10200.
    • (13) (a) Pchelka, B. K.; Loupy, A.; Petit, A. Tetrahedron 2006, 62, 10968-10979. (b) Hopper, D. W.; Vera, M. D.; Howa, D.; Sabatini, J.; 1. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Suzuki, A. In MetalCatalysed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1997; (c) Hall, D. Boronic Acids; Wiley-VCH, 2005. and references cited therein.
    • 2. (a) Thomas, G. Medicinal Chemistry: an Introduction, First edition; Chichester: Wiley, 2006; (b) Patrick, G. L. An Introduction to Medicinal Chemistry, Fourth edition; Oxford University Press: UK, 2009.
    • 3. (a) Cusack, B.; Nelson, A.; Richelson, E. Psychopharmacology 1994, 114, 559; (b) Broekkamp, C. L. E.; Leysen, D.; Peeters, B. W. M. M.; Pinder, R. M. J. Med. Chem.
    • 1995, 38, 4615; (c) Tatsumi, M.; Groshan, K.; Blakely, R. D.; Richelson, E. Eur. J.
    • Pharm. 1997, 340, 249; (d) Greenblatt, E. N.; Lippa, A. S.; Osterberg, A. C. Arch.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article