LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects: dewey610
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Ribeiro E. B., M. M. Telles, L. M. Oyama, V. L. F. Silveira and C. M. Nascimento. 2006. Hypothalamic serotonin in the control of food intake: physiological interactions and effect of obesity. Focus on Nutrition Research. Nova Science Publishers, New York, NY. 121-148.
    • 2. Schwatz M. W., 2006. Central nervous system regulation of food intake. Obesity. 14 Suppl 1:1S-8S.
    • 3. Baskin D. G., D. F. Lattermann, R. J. Seeley, S. C. Woods, Jr. D. Porte and M. W. Schwartz. 1999. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 848:114-123.
    • 5. Ketterer C., O. Tschritter, H. Preissl, M. Heni, H. U. Häring and A. Fritsche. Insulin sensitivity of the human brain. 2011. Diabetes. Res. Clin. Pract. 1:47-51.
    • 6. Carvalheira J. B., E. B. Ribeiro, E. P. Araújo, R. B. Guimarães, M. M. Telles, M. Torsoni M, J. A. R. Gontijo, L. A. Velloso and M. J. A. Saad. 2003. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia. 46:1629-1640.
    • 7. Niswender K. D and M. W. Schwartz. 2003. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front. Neuroendocrinol. 24:1-10.
    • 8. Zierath J. R. and H. Wallberg-Henriksson. 2002. From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann. NY Acad. Sci. 967:120-134.
    • 9. Du Y. and T. Wei. 2014. Inputs and outputs of insulin receptor. Protein Cell. 5:203-213.
    • 10. Huang C., M. Wu, J. Du, D. Liu and C. Chan. 2014. Systematic modeling for the insulin signaling network mediated by IRS1 and IRS2. J. Theor. Biol. 5193:00177-5.
    • 11. Gerozissis K. 2008. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur. J. Pharmacol. 585:38-49.
    • 12. Battú C. E., D. Rieger, S. Loureiro, G. V. Furtado, H. Bock, M. L. Saraiva-Pereira, R. Pessoa-Pureur, C. A. Gonçalves and M. L. Perry. 2012. Alterations of PI3K and AKT signaling pathways in the hippocampus and hypothalamus of Wistar rats treated with highly palatable food. Nutr. Neurosci. 15:10-7.
    • 13. Prada P. O., P. G. F. Quaresma, A. M. Caricilli, A. C. Santos, D. Guadagnini, J. Morari, L. Weissmann, E. R. Ropelle, J. B. C. Carvalheira, L. A. Velloso and M. J. A. Saad. 2013. Diabetes. 62:137- 148.
    • 14. De Souza C. T., E. P. Araujo, S. Bordin, R. Ashimine, R. L. Zollner, A. C. Boschero, M. J. A. Saad and L. A. Velloso. 2005. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 146:4192-4199.
    • 15. Clegg D. J., K. Gotoh, C. Kemp, M. D. Wortman, S. C. Benoit, L. M. Brown, D. D`Alessio, P. Tso, R. J. Seeley and S. C. Woods. 2011. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 103:10-16.
    • 16. Bueno A. A., Oyama L. M., de Macedo Motoyama C. S., da Silva Biz C. R., Silveira V. L., Ribeiro E. B., Oller do Nascimento C. M. 2010. Long chain saturated fatty acids increase haptoglobin gene expression in C57BL/6J mice adipose tissue and 3T3-L1 cells. Eur J Nutr. 49:235-41.
    • 17. Estadella D., C. M. O. Nascimento, L. M. Oyama, E. B. Ribeiro, A. R. Damaso and A. de Piano. 2012. Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm. 2013:137579.
    • 18. Buettner R., J. Schölmerich and L. C. Bollheime. 2007. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 15:798-808.
    • 19. Van Meer G. and Hoetzel S. 2009. Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Letters. 584:1800-1805.
    • 20. Riccardi G., R. Giacco, and A. A. Rivellese. 2004. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23:447-456.
    • 21. Chechi K., G. R. Herzberg and S. K. Cheema. 2010. Maternal dietary fat intake during gestation and lactation alters tissue fatty acid composition in the adult offspring of C57Bl/6 mice. Prostalglandins Leukot. Essent. Fatty Acids. 83:97-104.
    • 22. Wainwright P. E. 2002. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc. Nutr. Soc. 61:61-69.
    • 23. Liu Q., Smith M. A., Avilá J., DeBernardis J., Kansal M., Takeda A., Zhu X., Nunomura A., Honda K., Moreira P. I., Oliveira C. R., Santos M. S., Shimohama S., Aliev G., de la Torre J., Ghanbari H. A., Siedlak S. L., Harris P. L., Sayre L. M., Perry G. 2005. Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med. 38:746-754.
    • 24. Gow R. V., Sumich A., Vallee-Tourangeau F., Crawford M. A., Ghebremeskel K., Bueno A. A., Hibbeln J. R., Taylor E., Wilson D. A., Rubia K. 2013. Omega-3 fatty acids are related to abnormal emotion processing in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids. 88:419-429.
    • 25. Albuquerque K.T., F. L. Sardinha, M. M. Telles, R. L. H. Watanabe, C. M. O. Nascimento, M. G. T. do Carmo, and E. B. Ribeiro. 2006. Intake of trans fatty acid-rich hydrogenated fat during pregnancy and lactation inhibits the hypophagic effect of central insulin in the adult offspring. Nutrition. 22:820-829.
    • 26. Fedor D. and D. S. Kelley. 2009. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care. 12:138-146.
    • 27. Bueno A.A., L. M. Oyama, C. Oliveira, L. P. Pisani, E. B. Ribeiro, V. L. F. Silveira and C. M. O. Nascimento. 2008. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue. Eur. J. Physiol. 455:701-709.
    • 28. Gaiva M. H., Couto R. C., Oyama L. M., Couto G. E., Silveira V. L., Riberio E. B., Nascimento C. M. 2001. Polyunsaturated fatty acid rich diets: effect on adipose tissue metabolism in rats. Br J Nutr. 86:371-377
    • 29. Bueno A. A., Ghebremeskel K., Bakheit K. H., Elbashir M. I., Adam I. 2012. Dimethyl acetals, an indirect marker of the endogenous antioxidant plasmalogen level, are reduced in blood lipids of Sudanese pre-eclamptic subjects whose background diet is high in carbohydrate. J Obstet Gynaecol. 32:241-246.
    • 30. Paxinos G. and C. Watson. 1986. The rat brain in stereotaxic coordinates. San Diego: Academic Press Inc.
    • 31. Iuras A., Telles M. M., Andrade I. S., Santos G. M., Oyama L. M., Nascimento C. M., Silveira V. L., Ribeiro E. B. 2013. L-arginine abolishes the hypothalamic serotonergic activation induced by central interleukin-1β administration to normal rats. J Neuroinflammation. 10:147.
    • 32. Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 15:680-685.
    • 33. Patel P. and Abate N. 2013. Body fat distribution and insulin resistance. Nutrients. 5:2019-2027.
    • 34. Van Greevenbroek M. M. J., C. G. Schalkwijk and C. D. A. Stehouwer. 2013. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 71:174- 187.
    • 35. Scarpellini E. and J. Tack. 2012. Obesity and metabolic syndrome: an inflammatory condition. Dig. Dis. 30:148-153.
    • 36. Woods S.C., R. J. Seeley, P. A. Rushing, D. D´Alessio and P. Tso. 2003. A controlled high-fat diet induces an obese syndrome in rats. J. Nut. 133:1081-1087.
    • 37. Kanasaki K. and D. Koya. 2011. Biology of obesity: lessons from animal models of obesity. J. Biomed. Biotechnol. 2011:197636.
    • 38. Guyenet S. J., Schwartz M. W. 2012. Clinical review: Regulation of food intake, energy balance, 40. Buettner R., K. G. Parhofer, M. Woenckhaus, C. E. Wrede, L. A. Kunz-Schughart, J. Schölmerich and L. C. Bollheimer. 2006. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J. Mol. Endocrinol. 36:485-501.
    • 42. Gaíva M. H., R. C. Couto, L. M. Oyama, G. E. Couto, V. L. Silveira, E. B. Ribeiro and C. M. O. Nascimento. 2001. Polynsaturated fatty acid-rich diets: effect on adipose tissue metabolism in rats. Br. J. Nutr. 86:371-377.
    • 43. Preiss-Landl K., R. Zimmermann, G. Hämmerle and R. Zechner. 2002. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr. Opin. Lipidol.13:471-481.
    • 44. Watanabe R. L. H., I. S. Andrade, M. M. Telles, K. T. Albuquerque, C. M. O. Nascimento, L. M. Oyama, D. E. Casarini and E. B. Ribeiro. 2010. Long-term consumption of fish oil-enriched diet impairs serotonin hypophagia in rats. Cell. Mol. Neurobiol. 30:1025-1033.
    • 45. Dzeidzic B., J. Szemraj, J. Bartkowiak, and A. Walczewska. 2007. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. J. Neuroendocrinol.19:364-373.
    • 46. Barson J. R., O. Karatayev, V. Gaysinskaya, G. Q. Chang and S. F. Leibowitz. 2012. Effect of dietary fatty acid composition on food intake, triglycerides, and hypothalamic peptides. Regul. Pept. 173:13- 20.
    • 47. Feltrin K. L., T. J. Little, J. H. Meyer, M. Horowitz, A. J. Smout, J. Wishart, A. N. Pilichiewicz, T. Rades, I. M. Chapman and C. Feinle-Bisset. 2004. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am. J. Physiol. 287:524-533.
    • 48. Banas S. M., C. Rouch, N. Kassis, E. M. Markaki and K. Gerozissis. 2009. A dietary fat excess alters metabolic and neuroendocrine responses before the onset of metabolic diseases. Cell. Mol. Neurobiol. 29:157-68.
    • 49. Sartorius T., Ketterer C., Kullmann S., Balzer M., Rotermund C., Binder S., Hallschmid M., Machann J., Schick F., Somoza V., Preissl H., Fritsche A., Häring HU. and Hennige A. M. 2012. Monounsaturated fat acids prevent the aversive effects of obesity on locomotion, brain activity and sleep behavior. Diabetes. 61:1669-1679.
    • 50. Amusquivar E., Sánchez M., Hyde M. J., Laws J., Clarke L. and Herrera E. 2008. Influence of fatty acid profile of total parenteral nutrition emulsions on the fatty acid composition of different tissues of piglets. Lipids. 43:713-722.
    • 51. Hulbert A. J., Turner N., Storlien L. H. and Else P. L. 2005. Dietary fats and membrane function: implications for metabolism and disease. Biol. Rev. 80:155-169.
    • 52. Weijers R. N. 2012. Lipid composition of cell membrane and its relevance in type 2 diabetes mellitus. Curr. Diabetes. Rev. 8:390-400. 54. Vessby B., Gustafsson IB., Tengblad S. and Berglund L. 2013. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br. J. Nutr. 110:871-879.
    • 56. Guest J., M. Garg, A. Bilgin and R. Grant. 2013. Relationship between central and peripheral fatty acids in human. Lipids Health Dis. 12:79.
    • 57. Moraes J. C., A. Coope, J. Morari, D. E. Cintra, E. A. Roman, J. R. Pauli, T. Romanatto, J. B. Carvalheira, A. L. R. Oliveira, M. J. Saad and L. A. Velloso. 2009. High-fat diet induces apoptosis of hypothalamic neurons. Plos One. 4:e5045.
    • 58. Sardinha F.L., M. M. Telles, K. T. Albuquerque, L. M. Oyama, P. A. Guimarães, O. F. P. Santos and E. B. Ribeiro. 2006. Gender difference in the effect of intrauterine malnutrition on the central anorexigenic action of insulin in adult rats. Nutrition. 22:1152-1161.
    • 59. Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. 1998. Curr. Opin. Cell. Biol. 10:262-267.
    • 60. Chen R., O. Kim, J. Yang, K. Sato, K. M. Eisenmann, J. McCarthy, H. Chen and Y. Qiu. 2001. Regulation of Akt/PKB activation by tyrosine phosphorilation. J. Biol. Chem. 276:31858-31862.
    • 61. Carvalho E., C. Rondinone and U. Smith. 2000. Insulin resistance in fat cells from obese Zucker rats: evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4. Mol. Cell. Biochem. 206:7-16.
    • 62. Sequea D. A., N. Sharma, E. B. Arias and G. D. Cartee. 2012. Calorie restriction enhances insulinstimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J. Gereontol. A. Biol. Sci. Med. Sci. 67:1276-1285.
    • 63. Xu A.W., C. B. Kaelin, K. Takeda, S. Akira, M. W. 2005. Schwartz and G. S. Barsh. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J. Clin. Invest. 115:951-958.
    • 64. Mayer C. M. and D. D. Belsham. 2009. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Mol. Cell. Endocrinol. 307:99-108.
    • 66. Velloso L. A. 2006. The hypothalamic control of feeding and thermogenesis: implications on the development of obesity. Arq. Bras. Endocrinol. Metab. 50:165-176.
    • 67. Scholljegerdes E. J., Lake S. L., Weston T. R., Rule D. C., Moss G. E., Nett T. M., Hess B. W. 2007. Fatty acid composition of plasma, medial basal hypothalamus, and uterine tissue in primiparous beef cows fed high-linoleate safflower seeds. J Anim Sci. 85:1555-1564.
    • 68. Crawford M. A. 1992. The role of dietary fatty acids in biology: their place in the evolution of the human brain. Nutr Rev. 1992. 50:3-11.
    • 69. Fraser T., Tayler H., Love S. 2010. Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer's disease. Neurochem Res. 35:503-513.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article