Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer
Languages: English
Types: Article
Subjects: basalt, Thermobarometry, plagioclase-hosted melt inclusions, sub-05, Basalt, thermobarometry, Plagioclase-hosted melt inclusions, Saksunarvatn, Iceland
This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-3 Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range. D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aigner-Torres M, Blundy JD, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647-667. doi:10.1007/s00410-006-0168-2
    • Alfaro R, Brandsdóttir B, Rowlands DP et al (2007) Structure of the Grímsvötn central volcano under the Vatnajökull icecap, Iceland. Geophys J Int 168:863-876. doi:10.1111/j.1365-246X.2006.03238.x
    • Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794-803
    • Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70-85. doi:10.1016/j.chemgeo.2009.12.013
    • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103-111
    • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57-71
    • Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717-3742. doi:10.1016/j. gca.2006.05.003
    • Björck S, Ingólfsson Ó, Haflidason H et al (1992) Lake Tor - fadalsvatn: a high resolution record of the North Atlantic ash zone I and the last glacial-interglacial environmental changes in Iceland. Boreas 21:15-22. doi:10.1111/j.1502-3885.1992. tb00009.x
    • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193-209. doi:10.1016/0016-7037(91)90411-W
    • Blundy JD, Wood BJ (1994) Prediction of crystal melt partition coefifcients from elastic moduli. Nature 372:452-454
    • Bramham-Law CWF, Theuerkauf M, Lane CS, Mangerud J (2013) New findings regarding the Saksunarvatn Ash in Germany. J Quat Sci 28:248-257. doi:10.1002/jqs.2615
    • Breddam K (2002) Kistufell: primitive melt from the Iceland Mantle Plume. J Petrol 43:345-373. doi:10.1093/petrology/43.2.345
    • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249-253
    • Bucholz CE, Gaetani GA, Behn MD, Shimizu N (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivinehosted melt inclusions. Earth Planet Sci Lett 374:145-155. doi:10.1016/j.epsl.2013.05.033
    • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3:1-26. doi:10.1029/200 1GC000205
    • Danyushevsky LV, Plechov P (2011) Petrolog 3: integrated software for modelling crystallization processes. Geochem Geophys Geosyst 12:Q07021. doi:10.1029/2011GC003516
    • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68-83
    • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5-24. doi:10.1016/ S0009-2541(01)00369-2
    • Danyushevsky LV, Perfit MR, Eggins SM, Falloon TJ (2003) Crustal origin for coupled “ultra-depleted” and “plagioclase” signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros Transform Fault, East Pacific Rise. Contrib Mineral Petrol 144:619-637. doi:10.1007/s00410-002-0420-3
    • Darbyshire FA, White RS, Priestley KF (2000) Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth Planet Sci Lett 181:409-428. doi:10.1016/ S0012-821X(00)00206-5
    • Dixon JE (1997) Degassing of alkalic basalts. Am Mineral 82:368-378
    • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607-1631
    • Duncan R, Green D (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96:326-342
    • Dungan MA, Rhodes JM (1978) Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 431:417-431
    • Elliott TR, Hawkesworth CJ, Grönvold K (1991) Dynamic melting of the Iceland plume. Nature 351:201-206
    • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611-638. doi:10.1007/ s00410-006-0123-2
    • Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Mineral Petrol 160:551-568. doi:10.1007/s00410-010-0493-3
    • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe 2+, Ca and Mn. J Petrol 24:256-265
    • Gaetani GA, Watson EB (2000) Open system behavior of olivinehosted melt inclusions. Earth Planet Sci Lett 183:27-41. doi:10.1016/S0012-821X(00)00260-0
    • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1030. doi:10.1029/2001GC000217
    • Grönvold K, Óskarsson N, Johnsen S et al (1995) Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth Planet Sci Lett 35:149-155
    • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of midocean ridge basalt (MORB). Geophys Monogr Geophys Union 71:281-310
    • Guðmundsson Á, Lecoeur N, Mohajeri N, Thordarson T (2014) Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull Volcanol 76:869. doi:10.1007/s00445-014-0869-8
    • Guilbaud M-N, Blake S, Thordarson T, Self S (2007) Role of Syneruptive cooling and degassing on textures of lavas from the AD 1783-1784 Laki eruption, South Iceland. J Petrol 48:1265- 1294. doi:10.1093/petrology/egm017
    • Gurenko AA, Chaussidon M (1995) Enriched and depleted primitive melts included in olivine from Icelandic tholeiites-origin by melting of a single mantle column. Geochim Cosmochim Acta 59:2905-2917
    • Gurenko AA, Sobolev AV (2006) Crust-primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland. Contrib Mineral Petrol 151:495-520. doi:10.1007/s00410-006-0079-2
    • Haflidason H, Eiriksson J, Van Kreveld S (2000) The tephrochronology of Iceland and the North Atlantic region during the middle and Late Quaternary: a review. J Quat Sci 15:3-22. doi:10.1002/ (SICI)1099-1417(200001)15:1<3:AID-JQS530>3.0.CO;2-W
    • Halldórsson SA, Óskarsson N, Grönvold K et al (2008) Isotopic-heterogeneity of the Thjorsa lava-implications for mantle sources and crustal processes within the Eastern Rift Zone, Iceland. Chem Geol 255:305-316. doi:10.1016/j.chemgeo.2008.06.050
    • Hansen H, Grönvold K (2000) Plagioclase ultraphyric basalts in Iceland: the mush of the rift. J Volcanol Geotherm Res 98:1-32. doi:10.1016/S0377-0273(99)00189-4
    • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1-8. doi:10.1007/ BF00320827
    • Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120-131. doi:10.1016/j.epsl.2014.02.031
    • Hartley ME, Neave DA, Maclennan J et al (2015) Diffusive overhydration of olivine-hosted melt inclusions. Earth Planet Sci Lett 425:168-178. doi:10.1016/j.epsl.2015.06.008
    • Hauri EH, Grönvold K, Óskarsson N, McKenzie D (2002) Abundance of carbon in the Icelandic mantle: constraints from melt inclusions. Am Geophys Union, Spring Meet, p V51D-03
    • Herzberg C, O'Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic Age. J Petrol 43:1857-1883. doi:10.1093/ petrology/43.10.1857
    • Jakobsson SP (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Islandica 26:1-103
    • Jakobsson SP, Jónsson J, Shido F (1978) Petrology of the western Reykjanes peninsula, Iceland. J Petrol 19:669-705
    • Jennings A, Thordarson T, Zalzal K et al (2014) Holocene tephra from Iceland and Alaska in SE Greenland Shelf Sediments. Mar Tephrochronol. doi:10.1144/SP398.6
    • Jochum KP, Willbold M, Raczek I et al (2005) Chemical characterisation of the USGS reference glasses and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29:285-302
    • Jochum KP, Stoll B, Herwig K et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008
    • Jochum KP, Weis U, Stoll B et al (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397-429. doi:10.1111/j.1751-908X.2011.00120.x
    • Jóhannsdóttir GE (2007) Mid Holocene to late glacial tephrochronology in West Iceland as revealed in three lacustrine environments. Masters Thesis, University of Iceland
    • Jóhansen J (1975) Pollen diagrams from the Shetland and Faroe Islands. New Phytol 75:369-387
    • Jóhansen J (1985) Studies in the vegatation history of the Faroe and Shetland Islands. Føroya Fróðskaparfelag, Tórshavn
    • Jóhannsdóttir GE, Thordarson T, Geirsdóttir A, Larsen G (2005) The widespread ~10 ka Saksunarvatn Tephra : a product of three large basaltic Phreatoplinian eruptions? Geophys Res Abstr 7:05991
    • Jude-Eton TC, Thordarson T, Guðmundsson MT, Oddsson B (2012) Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn Volcano, Iceland. Bull Volcanol 74:1057-1082. doi:10.1007/ s00445-012-0583-3
    • Kilgour GN, Saunders KE, Blundy JD et al (2014) Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data. J Volcanol Geotherm Res 288:62-75. doi:10.1016/j. jvolgeores.2014.09.010
    • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res Solid Earth 97:6885-6906
    • Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162:45-61
    • Koornneef JM, Stracke A, Bourdon B et al (2012) Melting of a two-component source beneath Iceland. J Petrol 53:127-157. doi:10.1093/petrology/egr059
    • Kress VC, Ghiorso MS (2004) Thermodynamic modeling of postentrapment crystallization in igneous phases. J Volcanol Geotherm Res 137:247-260. doi:10.1016/j.jvolgeores.2004.05.012
    • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges, 71st edn. Geophys Monogr. American Geophysical Union, pp 183-280
    • Larsen G (1984) Recent volcanic history of the Veidivötn fissure swarm, southern Iceland-an approach to volcanic risk assessment. J Volcanol Geotherm Res 22:33-58
    • Larsen G (2005) Explosive volcanism in Iceland: three examples of hydromagmatic basaltic eruptions on long volcanic fissures within the past 1200 years. Geophys Res Abstr 7:10158
    • LaTourrette T, Wasserburg G, Fahey A (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim Cosmochim Acta 60:1329-1340
    • Lawson I, Gathorne-Hardy F, Church M et al (2007) Environmental impacts of the Norse settlement: palaeoenvironmental data from Mývatnssveit, northern Iceland. Boreas 36:1-19. doi:10.1080/03009480600827298
    • Lofgren GE (1974) An experimental study of plagioclase morphology: isothermal crystallisation. Am J Sci 274:243-273
    • Lohne ØS, Mangerud J, Birks HH (2014) IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J Quat Sci 29:506-507. doi:10.1002/jqs.2722
    • Lowenstern J (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, lfuids and ore deposits. Mineral Association Canada Short Course Series 23, pp 71-99
    • Maclennan J (2008a) Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 72:4159-4176
    • Maclennan J (2008b) Concurrent mixing and cooling of melts under Iceland. J Petrol 49:1931-1953. doi:10.1093/petrology/egn052
    • Maclennan J, McKenzie D, Grönvold K (2001) Plume-driven upwelling under central Iceland. Earth Planet Sci Lett 194:67-82
    • Maclennan J, McKenzie D, Hilton F et al (2003) Geochemical variability in a single flow from northern Iceland. J Geophys Res Solid Earth 108:1-21. doi:10.1029/2000JB000142
    • Mangerud J, Furnes H, Jóhansen J (1986) A 9000-year-old ash bed on the Faroe Islands. Quat Res 265:262-265
    • McKenzie D, O'Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021
    • Merkt J, Müller H, Knabe W et al (1993) The early Holocene Saksunarvatn tephra found in lake sediments in NW Germany. Boreas 22:93-100
    • Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363-402. doi:10.2138/rmg.2008.69.10
    • Michael PJ, McDonough WF, Nielsen RL, Cornell WC (2002) Depleted melt inclusions in MORB plagioclase: messages from the mantle or mirages from the magma chamber? Chem Geol 183:43-61. doi:10.1016/S0009-2541(01)00371-0
    • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69:333-362. doi:10.2138/rmg.2008.69.9
    • Moore JG, Calk LC (1991) Degassing and differentiation in subglacial volcanoes, Iceland. J Volcanol Geotherm Res 46:157-180. doi:10.1016/0377-0273(91)90081-A
    • Moore LR, Gazel E, Tuohy R et al (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Mineral 100:806-823
    • Nakamura Y (1973) Origin of sector-zoning of igneous clinopyroxenes. Am Mineral 58:986-990
    • Nakamura M, Shimakita S (1998) Dissolution origin and synentrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161:119-133. doi:10.1016/ S0012-821X(98)001447
    • Namur O, Charlier B, Toplis M, Vander Auwera J (2011) Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib Mineral Petrol 163:133-150. doi:10.1007/ s00410-011-0662-z
    • Neave DA, Fabbro G, Herd RA et al (2012) Melting, differentiation and degassing at the Pantelleria Volcano, Italy. J Petrol 53:637- 663. doi:10.1093/petrology/egr074
    • Neave DA, Passmore E, Maclennan J et al (2013) Crystal-melt relationships and the record of deep mixing and crystallization in the AD 1783-84 Laki eruption, Iceland. J Petrol 54:1661-1690. doi:10.1093/petrology/egt027
    • Neave DA, Maclennan J, Edmonds M, Thordarson T (2014a) Melt mixing causes negative correlation of trace element enrichment and CO2 content prior to an Icelandic eruption. Earth Planet Sci Lett 400:272-283
    • Neave DA, Maclennan J, Hartley ME et al (2014b) Crystal storage and transfer in basaltic systems: the Skuggafjöll eruption, Iceland. J Petrol 55:2311-2356. doi:10.1093/petrology/egu058
    • Nielsen RL (1995) Local diversity of MORB parent magmas: evidence from melt inclusions in high-an feldspar from the Gorda Ridge. Contrib Mineral Petrol 122:34-50. doi:10.1180/ minmag.1994.58A.2.75
    • Nielsen RL (2011) The effects of re-homogenization on plagioclase hosted melt inclusions. Geochem Geophys Geosyst 12:Q0AC17. doi:10.1029/2011GC003822
    • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib Mineral Petrol 121:115-125
    • Óladottir BA, Thordarson T, Larsen G, Sigmarsson O (2007) Survival of the Myrdalsjökull ice cap through the Holocene thermal maximum: evidence from sulphur contents in Katla tephra layers (Iceland) from the last 8400 years. Ann Glaciol 45:183-188
    • Óladóttir BA, Sigmarsson O, Larsen G, Thordarson T (2007) Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol 70:475-493. doi:10.1007/s00445-007-0150-5
    • Óskarsson N, Helgason Ö, Steinthórsson S (1994) Oxidation state of iron in mantle-derived magmas of the Icelandic rift zone. Hyperfine Interact 91:733-737. doi:10.1007/BF02064599
    • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-an plagioclase. Contrib Mineral Petrol 118:420-432
    • Passmore E, Maclennan J, Fitton JG, Thordarson T (2012) Mush disaggregation in basaltic magma chambers: evidence from the AD 1783-84 Laki eruption. J Petrol 35:2593-2623
    • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541-552. doi:10.1016/j.epsl.2008.05.020
    • Presnall DC, Dixon SA, Dixon JR et al (1978) Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib Mineral Petrol 220:203-220
    • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61-120
    • Putirka KD, Johnson M, Kinzler R et al (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contrib Mineral Petrol 123:92-108. doi:10.1007/ s004100050145
    • Qin Z, Lu F, Anderson T Jr (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77:565-576
    • Rasmussen SO, Andersen KK, Svensson AM et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. doi:10.1029/2005JD006079
    • Reverso T, Vandemeulebrouck J, Jouanne F et al (2014) A two-magma chamber model as a source of deformation at Grímsvötn Volcano, Iceland. J Geophys Res Solid Earth 119:4666-4683. doi:1 0.1002/2013JB010569
    • Roedder E (1979) Origin and significance of magmatic inclusions. Bull Minéral 102:487-510
    • Rubin KH, Sinton JM, Maclennan J, Hellebrand E (2009) Magmatic ifltering of mantle compositions at mid-ocean-ridge volcanoes. Nat Geosci 2:321-328. doi:10.1038/ngeo504
    • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419:451-455. doi:10.1038/ nature01073
    • Saunders K, Blundy JD, Dohmen R, Cashman K (2012) Linking petrology and seismology at an active volcano. Science 336:1023-1027. doi:10.1126/science.1220066
    • Shishkina TA, Botcharnikov RE, Holtz F et al (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115-125. doi:10.1016/j. chemgeo.2010.07.014
    • Shishkina TA, Botcharnikov RE, Holtz F et al (2014) Compositional and pressure effects on the solubility of H2O and CO2 in macfi melts. Chem Geol 388:112-129. doi:10.1016/j.chemgeo.2014.09.001
    • Shorttle O, Maclennan J (2011) Compositional trends of Icelandic basalts: implications for short-lengthscale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst 12:Q11008
    • Sigmarsson O, Karlsson H, Larsen G (2000) The 1996 and 1998 subglacial eruptions beneath the Vatnajökull ice sheet in Iceland: contrasting geochemical and geophysical inferences on magma migration. Bull Volcanol 61:468-476. doi:10.1007/PL00008912
    • Sigmarsson O, Haddadi B, Carn S et al (2013) The sulfur budget of the 2011 Grímsvötn eruption, Iceland. Geophys Res Lett 40:6095-6100
    • Sigmundsson F, Hreinsdóttir S, Hooper A et al (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426-430. doi:10.1038/nature09558
    • Sigurgeirsson MÁ, Leósson MA (1993) Two early Holocene tephra layers in the Sogamyri peat deposit Reykjavik. Náttúrufraeðingurinn 62:129-137
    • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res Solid Earth 97:197-216. doi:10.1029/91JB02508
    • Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42:321-354
    • Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151-154
    • Sours-Page R, Nielsen RL, Batiza R (2002) Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise. Chem Geol 183:237-261. doi:10.1016/ S0009-2541(01)00384-9
    • Steele-Macinnis MJ, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O-CO2 systematics of vapor-saturated, silicate melt inclusions. J Petrol 52:2461-2482. doi:10.1093/petrology/egr052
    • Stracke A, Zindler A, Salters VJM et al (2003) Theistareykir revisited. Geochem Geophys Geosyst 4:8507
    • Streeter R, Dugmore A (2014) Late-Holocene land surface change in a coupled social-ecological system, southern Iceland: a crossscale tephrochronology approach. Quat Sci Rev 86:99-114. doi:10.1016/j.quascirev.2013.12.016
    • Tarasewicz J, White RS, Brandsdóttir B, Schoonman CM (2014) Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajokull volcano, Iceland. Geophys J Int 198:906-921. doi:10.1093/gji/ggu169
    • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361-386
    • Thomson A, Maclennan J (2013) The distribution of olivine compositions in Icelandic basalts and picrites. J Petrol 54:745-768. doi:10.1093/petrology/egs083
    • Thordarson T (2014) The widespread ~10 ka Saksunarvatn tephra is not a product single eruption. Am Geophys Union, Fall Meet, p V24B-04
    • Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197-228
    • Thordarson T, Self S, Óskarsson N, Hulsebosch T (1996) Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783-1784 AD Laki (Skaftár Fires) eruption in Iceland. Bull Volcanol 58:205-225. doi:10.1007/s004450050136
    • Thornalley DJR, McCave IN, Elderfield H (2011) Tephra in deglacial ocean sediments south of Iceland: stratigraphy, geochemistry and oceanic reservoir ages. J Quat Sci 26:190-198. doi:10.1002/jqs.1442
    • Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane Fracture Zone: 20-25°N, midAtlantic ridge. Contrib Mineral Petrol 96:121-139
    • Tuffen H, Owen J, Denton J (2010) Magma degassing during subglacial eruptions and its use to reconstruct palaeo-ice thicknesses. Earth Sci Rev 99:1-18. doi:10.1016/j.earscirev.2010.01.001
    • Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa; the Effect of pressure on phase relations and liquid compositions of Tholeiitic magmas. J Petrol 48:159-184. doi:10.1093/petrology/egl058
    • Viti C, Frezzotti ML (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos 55:125-138. doi:10.1016/S0024-4937(00)00042-6
    • Waagstein R, Jóhansen J (1968) Tre vulkanske askelage fra Faerø. Meddelelser fra Dansk Geol Foren 18:257-264
    • Wallace PJ, Kamenetsky VS, Cervantes P (2015) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am Mineral 100:787-794
    • Walter MJ (1998) Melting of Garnet Peridotite and the origin of Komatiite and depleted Lithosphere. J Petrol 39:29-60
    • Welsch B, Faure F, Famin V et al (2013) Dendritic crystallization: a single process for all the textures of olivine in basalts? J Petrol 54:539-574. doi:10.1093/petrology/egs077
    • Winpenny B, Maclennan J (2011) A partial record of mixing of mantle melts preserved in Icelandic Phenocrysts. J Petrol 52:1791- 1812. doi:10.1093/petrology/egr031
    • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166-181. doi:10.1007/ s004100050330
    • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53-72
    • Wright TL, Doherty PC (1970) A linear programming and least squares computer method for petrologic mixing problems. Geol Soc Am Bull 81:1995-2008. doi:10.1130/0016-7606(1970)81
    • Yang H-J, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1-18
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article