LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:
Diamond anvil cells allow the behavior of materials to be studied at pressures up to hundreds of gigapascals in a small and convenient instrument. However, physical access to the sample is impossible once it is pressurized. We show that optical tweezers can be used to hold and manipulate particles in such a cell, confining micron-sized transparent beads in the focus of a laser beam. Here, we use a modified optical tweezers geometry, allowing us to trap through an objective lens with a higher working distance, overcoming the constraints imposed by the limited angular acceptance of the anvil cell. We demonstrate the effectiveness of the technique by measuring water’s viscosity at pressures of up to 1.3 GPa. In contrast to previous viscosity measurements in anvil cells, our technique measures absolute viscosity and does not require scaling to the accepted value at atmospheric pressure. This method could also measure the frequency dependence of viscosity as well as being sensitive to anisotropy in the medium’s viscosity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Avenue, Cambridge CB3 0HE, United Kingdom.
    • †http://www.physics.gla.ac.uk/Optics/ [1] P. W. Bridgman, J. Biol. Chem. 19, 511 (1914). [2] L. Dubrovinsky, N. Dubrovinskaia, V. Prakapenka, and
    • A. Abakumov, Nat. Commun. 3, 1163 (2012). [3] R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov,
    • and E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012). [4] G. Piermarini, R. Forman, and S. Block, Rev. Sci. Instrum.
    • 49, 1061 (1978). [5] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu,
    • Opt. Lett. 11, 288 (1986). [6] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970). [7] P. Rodrigo, V. R. Daria, and J. Glu¨ckstad, Appl. Phys. Lett.
    • 86, 074103 (2005). [8] G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. M.
    • Cooper, J. Mod. Opt. 51, 409 (2004). [9] M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M.
    • Ritsch-Marte, Opt. Express 17, 19 414 (2009). [10] S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber,
    • A. Hermerschmidt, and W. Osten, J. Opt. A 11, 034011
    • (2009). [11] M. Reicherter, T. Haist, E. Wagemann, and H. J. Tiziani,
    • Opt. Lett. 24, 608 (1999). [12] D. G. Grier, Nature (London) 424, 810 (2003). [13] S. B. G. Thalhammer, R. Steiger, and M. Ritsch-Marte,
    • J. Opt. 13, 044024 (2011). [14] G. M. Gibson, R. W. Bowman, A. Linnenberger, M.
    • and M. J. Padgett, Rev. Sci. Instrum. 83, 113107 (2012). [15] H. King, E. Herbolzheimer, and R. Cook, J. Appl. Phys.
    • 71, 2071 (1992). [16] R. Cook, C. Herbst, and H. King, Jr., J. Phys. Chem. 97,
    • 2355 (1993). [17] E. H. Abramson, Phys. Rev. E 76, 051203 (2007). [18] S. Bair, M. Khonsari, and W. O. Winer, Tribol. Int. 31, 573
    • (1998). [19] K. Dudziak and E. Franck, Ber. Bunsen-Ges. Phys. Chem.
    • 70, 1120 (1966). [20] G. W. C. Kaye and T. H. Laby, Tables of Physical and
    • Chemical Constants, Kaye and Laby Online, Version 1.0,
    • Elasticities and Strengths (2005), p. 2.2.2, http://www
    • .kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html. [21] R. W. Bowman, G. Gibson, and M. Padgett, Opt. Express
    • 18, 11 785 (2010). [22] S. Tauro, A. Ban˜as, D. Palima, and J. Glu¨ckstad, Opt.
    • Express 18, 18 217 (2010). [23] R. W. Bowman, G. Thalhammer, A. Jesacher, G. Gibson,
    • M. Ritsch-Marte, and M. J. Padgett, Opt. Express 19, 9908
    • (2011). [24] R. Forman, S. Block, J. Barnett, and G. Piermarini,
    • Science 176, 284 (1972). [25] A. Chijioke, W. Nellis, A. Soldatov, and I. Silvera, J. Appl.
    • Phys. 98, 114905 (2005). [26] K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75,
    • 594 (2004). [27] A. Yao, M. Tassieri, M. Padgett, and J. Cooper, Lab Chip
    • 9, 2568 (2009). [28] M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R.
    • Warren, M. J. Padgett, and J. M. Cooper, Phys. Rev. E 81,
    • 026308 (2010). [29] A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and
    • H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004). [30] G. Bolognesi, S. Bianchi, and R. Di Leonardo, Opt.
    • Express 19, 19 245 (2011). [31] K. Xiao and D. G. Grier, Phys. Rev. Lett. 104, 028302 (2010).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article