Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Wiley
Languages: English
Types: Article
In the mid-1970s it was recognized that, as well as being substances that deplete stratospheric ozone, chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone-depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons.\ud This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, SF6, NF3, and related halogen containing compounds. In addition we provide a comprehensive and self-consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present Global Temperature change Potentials (GTPs) for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies, and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely-used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Acerboni, G., J. A. Beukes, N. R. Jensen, J. Hjorth, G. Myhre, C. J. Nielsen, and J. K. Sundet (2001), Atmospheric degradation and global warming potentials of three perfluoroalkenes, Atmos. Environ., 35(24), 4113-4123, doi:10.1016/S1352-2310(01)00209-6.
    • Anastasi, C., A. E. Heathfield, G. P. Knight, and F. Nicolaisen (1994), Integrated absorption-coefficients of CHClF2 (HCFC-22) and CH3Br in the atmospheric infrared window region, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 50(10), 1791-1798, doi:10.1016/ 0584-8539(94)00132-4.
    • Andersen, M. P. S., D. R. Blake, F. S. Rowland, M. D. Hurley, and T. J. Wallington (2009), Atmospheric Chemistry of Sulfuryl Fluoride: Reaction with OH Radicals, CI Atoms and O3, Atmospheric Lifetime, IR Spectrum, and Global Warming Potential, Environ. Sci. Technol., 43(4), 1067-1070, doi:10.1021/es802439f.
    • Andersen, M. P. S., M. D. Hurley, V. F. Andersen, O. J. Nielsen, and T. J. Wallington (2010a), CHF2OCHF2 (HFE-134): IR Spectrum and Kinetics and Products of the Chlorine-Atom-Initiated Oxidation, J. Phys. Chem. A, 114(14), 4963-4967, doi:10.1021/ jp101507f.
    • Andersen, M. P. S., V. F. Andersen, O. J. Nielsen, S. P. Sander, and T. J. Wallington (2010b), Atmospheric Chemistry of HCF2O (CF2CF2O)xCF2H (x = 2-4): Kinetics and Mechanisms of the Chlorine-Atom-Initiated Oxidation, Chemphyschem, 11(18), 4035-4041, doi:10.1002/cphc.201000438.
    • Andersen, M. P. S., R. L. Waterland, S. P. Sander, O. J. Nielsen, and T. J. Wallington (2012a), Atmospheric chemistry of CxF2x + 1CH = CH2 (x = 1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials, J. Photochem. Photobiol. A-Chem., 233, 50-52, doi:10.1016/j.jphotochem.2012.02.020.
    • Andersen, M. P. S., O. J. Nielsen, T. J. Wallington, B. Karpichev, and S. P. Sander (2012b), Assessing the Impact on Global Climate from General Anesthetic Gases, Anesth. Analg., 114(5), 1081-1085, doi:10.1213/ANE.0b013e31824d6150.
    • Andersen, M. P. S., E. J. K. Nilsson, O. J. Nielsen, M. S. Johnson, M. D. Hurley, and T. J. Wallington (2008), Atmospheric chemistry of trans-CF3CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3, J. Photochem. Photobiol., A, 199(1), 92-97, doi:10.1016/j.jphotochem.2008.05.013.
    • Andersen, M. P. S., S. P. Sander, O. J. Nielsen, D. S. Wagner, T. J. Sanford, and T. J. Wallington (2010c), Inhalation anaesthetics and climate change, Br. J. Anaesth., 105(6), 760-766, doi:10.1093/bja/aeq259.
    • Andersen, M. P. S., M. D. Hurley, T. J. Wallington, F. Blandini, N. R. Jensen, V. Librando, and J. Hjorth (2004), Atmospheric chemistry of CH3O(CF2CF2O)nCH3 (n = 1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials, J. Phys. Chem. A, 108(11), 1964-1972, doi:10.1021/jp036615a.
    • Andersen, M. P. S., O. J. Nielsen, A. Toft, T. Nakayama, Y. Matsumi, R. L. Waterland, R. C. Buck, M. D. Hurley, and T. J. Wallington (2005), Atmospheric chemistry of CxF2x+1CH = CH2 (x = 1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3, J. Photochem. Photobiol. A-Chem., 176(1-3), 124-128, doi:10.1016/j.jphotochem.2005.06.015.
    • Andrews, T., and P. M. Forster (2008), CO2 forcing induces semidirect effects with consequences for climate feedback interpretations, Geophys. Res. Lett., 35, L04802, doi:10.1029/ 2007GL032273.
    • Antiñolo, M., E. Jimenez, and J. Albaladejo (2011), UV absorption cross sections between 230 and 350 nm and pressure dependence of the photolysis quantum yield at 308 nm of CF3CH2CHO, PCCP, 13(35), 15936-15946, doi:10.1039/c1cp21368g.
    • Antiñolo, M., E. Jimenez, and J. Albaladejo (2012a), Photochemistry of CF3(CH2)2CHO in air: UV absorption cross sections between 230 and 340 nm and photolysis quantum yields at 308 nm, J. Photochem. Photobiol. A-Chem., 231(1), 33-40, doi:10.1016/j.jphotochem.2011.12.023.
    • Antiñolo, M., S. González, B. Ballesteros, J. Albaladejo, and E. Jiménez (2012b), Laboratory Studies of CHF2CF2CH2OH and CF3CF2CH2OH: UV and IR Absorption Cross Sections and OH Rate Coefficients between 263 and 358 K, J. Phys. Chem. A 116(24), 6041-6050, doi:10.1021/jp2111633.
    • Anttila, R., C. Betrencourtstirnemann, and J. Dupre (1983), The infrared bands nu-2 and nu-5 of CH3Br with coriolis interaction, J. Mol. Spectrosc., 100(1), 54-74, doi:10.1016/0022-2852(83) 90025-5.
    • Atkins, P. W., and R. S. Friedman (2010), Molecular quantum mechanics, Fifth Edition, Oxford, Oxford University Press.
    • Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and T. J. Wallington (2008), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV-gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8(15), 4141-4496, doi:10.5194/acp-8-4141-2008.
    • Baasandorj, M., A. R. Ravishankara, and J. B. Burkholder (2011), Atmospheric Chemistry of (Z)-CF3CH = CHCF3: OH Radical Reaction Rate Coefficient and Global Warming Potential, J. Phys. Chem. A, 115(38), 10539-10549, doi:10.1021/jp206195g.
    • Baasandorj, M., G. Knight, V. C. Papadimitriou, R. K. Talukdar, A. R. Ravishankara, and J. B. Burkholder (2010), Rate Coefficients for the Gas-Phase Reaction of the Hydroxyl Radical with CH2 = CHF and CH2 = CF2, J. Phys. Chem. A, 114(13), 4619-4633, doi:10.1021/jp100527z.
    • Ballard, J., R. J. Knight, and D. A. Newnham (2000a), Infrared absorption cross-sections and integrated absorption intensities of perfluoroethane and cis-perfluorocyclobutane, J. Quant. Spectrosc. Radiat. Transf., 66(2), 199-212, doi:10.1016/S0022-4073(99) 00217-4.
    • Ballard, J., et al. (2000b), An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22, J. Quant. Spectrosc. Radiat. Transf., 66(2), 109-128, doi:10.1016/S0022-4073(99)00211-3.
    • Ballard, J., et al. (2000c), SWAGG Project-Introduction, J. Quant. Spectrosc. Radiat. Transf., 66(2), 107-108, doi:10.1016/ S0022-4073(99)00225-3.
    • Barry, J., G. Locke, D. Scollard, H. Sidebottom, J. Treacy, C. Clerbaux, R. Colin, and J. Franklin (1997), 1,1,1,3,3,-pentafluorobutane (HFC365mfc): Atmospheric degradation and contribution to radiative forcing, Int. J. Chem. Kinet., 29(8), 607-617, doi:10.1002/(SICI)1097- 4601(1997)29:8<607::AID-KIN6>3.0.CO;2-Y.
    • Bera, P. P., J. S. Francisco, and T. J. Lee (2009), Identifying the Molecular Origin of Global Warming, J. Phys. Chem. A, 113(45), 12694-12699, doi:10.1021/jp905097g.
    • Bera, P. P., J. S. Francisco, and T. J. Lee (2010), Design strategies to minimize the radiative efficiency of global warming molecules, Proc. Natl. Acad. Sci. U. S. A., 107(20), 9049-9054, doi:10.1073/ pnas.0913590107.
    • Berglen, T. F., T. K. Berntsen, I. S. A. Isaksen, and J. K. Sundet (2004), A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J. Geophys. Res., 109, D19310, doi:10.1029/2003JD003948.
    • Blanco, M. B., and M. A. Teruel (2007), Atmospheric degradation of fluoroesters (FESs): Gas-phase reactivity study towards OH radicals at 298 K, Atmos. Environ., 41(34), 7330-7338, doi:10.1016/j.atmosenv.2007.05.013.
    • Blowers, P., and K. Hollingshead (2009), Estimations of Global Warming Potentials from Computational Chemistry Calculations for CH2F2 and Other Fluorinated Methyl Species Verified by Comparison to Experiment, J. Phys. Chem. A, 113(20), 5942-5950, doi:10.1021/jp8114918.
    • Blowers, P., K. F. Tetrault, and Y. Trujillo-Morehead (2008a), Global warming potential predictions for hydrofluoroethers with two carbon atoms, Theor. Chem. Acc., 119(4), 369-381, doi:10.1007/s00214-007-0394-3.
    • Blowers, P., D. M. Moline, K. F. Tetrault, R. R. Wheeler, and S. L. Tuchawena (2007), Prediction of radiative forcing values for hydrofluoroethers using density functional theory methods, J. Geophys. Res., 112(D15108), doi:10.1029/2006JD008098.
    • Blowers, P., D. M. Moline, K. F. Tetrault, R. R. Wheeler, and S. L. Tuchawena (2008b), Global warming potentials of hydrofluoroethers, Environ. Sci. Technol., 42(4), 1301-1307, doi:10.1021/es0706201.
    • Bolin, B., and H. Rodhe (1973), Note on concepts of age distribution and transit-time in natural reservoirs, Tellus, 25(1), 58-62, doi:10.1111/j.2153-3490.1973.tb01594.x.
    • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont (2004), A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109(D14203), doi:10.1029/2003JD003697.
    • Boucher, O. (2012), Comparison of physically- and economicallybased CO2-equivalences for methane, Earth Syst. Dynam., 3, 49-61, doi:10.5194/esd-3-49-2012.
    • Boucher, O., and M. S. Reddy (2008), Climate trade-off between black carbon and carbon dioxide emissions, Energy Policy, 193-200.
    • Bravo, I., G. Marston, D. R. Nutt, and K. P. Shine (2011a), Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs), J. Quant. Spectrosc. Radiat. Transfer, 112(12), 1967-1977, doi:10.1016/j.jqsrt.2011.05.001.
    • Bravo, I., Y. Diaz-de-Mera, A. Aranda, K. Smith, K. P. Shine, and G. Marston (2010a), Atmospheric chemistry of C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH: temperature dependence of the kinetics of their reactions with OH radicals, atmospheric lifetimes and global warming potentials, PCCP, 12(19), 5115-5125, doi:10.1039/b923092k.
    • Bravo, I., Y. Diaz-de-Mera, A. Aranda, E. Moreno, D. R. Nutt, and G. Marston (2011b), Radiative efficiencies for fluorinated esters: indirect global warming potentials of hydrofluoroethers, PCCP, 13(38), 17185-17193, doi:10.1039/c1cp21874c.
    • Bravo, I., A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, and T. J. Wallington (2010b), Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory, J. Geophys., 115, D24317, doi:10.1029/ 2010JD014771.
    • Brodbeck, C., I. Rossi, H. Strapelias, and J. P. Bouanich (1980), Infrared spectral absorption intensities in the v3 and v4 regions of SF6, Chem. Phys., 54(1), 1-7, doi:10.1016/0301-0104(80) 80029-2.
    • Brown, L. R., C. B. Farmer, C. P. Rinsland, and R. A. Toth (1987), Molecular line parameters for the atmospheric trace molecule spectroscopy experiment, Appl. Optics, 26(23), 5154-5182.
    • Calvert, J. G., R. G. Derwent, J. J. Orlando, G. S. Tyndall, and T. J. Wallington (2008), Atmospheric Oxidation of the Alkanes, ISBN 978-0-19-536581-8, Oxford, Oxford University Press.
    • Cappellani, F., and G. Restelli (1992), Infrared band strengths and their temperature-dependence of the hydrohalocarbons HFC-134a, HFC-152a, HCFC-22, HCFC-123 and HCFC-142b, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 48(8), 1127-1131, doi:10.1016/0584-8539(92)80122-D.
    • Cavalli, F., M. Glasius, J. Hjorth, B. Rindone, and N. R. Jensen (1998), Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers, Atmos. Environ., 32(21), 3767-3773, doi:10.1016/S1352-2310(98)00106-X.
    • Chapados, C. (1988), Infrared-absorption of SF6 from 32-cm 1 to 3000-cm 1 in the gaseous and liquid states, J. Mol. Spectrosc., 132(2), 323-351, doi:10.1016/0022-2852(88)90329-3.
    • Charmet, A. P., N. Tasinato, P. Stoppa, A. Baldacci, and S. Giorgianni (2008), Jet-cooled diode laser spectrum and FTIR integrated band intensities of CF3Br: rovibrational analysis of 2n5 and n2 + n3 bands near 9 mm and cross-section measurements in the 450-2500 cm 1 region, Mol. Phys., 106(9-10), 1171-1179, doi:10.1080/00268970802026709.
    • Charmet, A. P., P. Stoppa, N. Tasinato, A. Baldan, S. Giorgianni, and A. Gambi (2010), Spectroscopic study of CHBrF2 up to 9500 cm 1: Vibrational analysis, integrated band intensities, and ab initio calculations, J. Chem. Phys., 133(4), doi:10.1063/1.3460922.
    • Chen, L., S. Kutsuna, K. Tokuhashi, and A. Sekiya (2006), Kinetics and mechanisms of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 reactions with OH radicals, J. Phys. Chem. A, 110(47), 12845-12851, doi:10.1021/jp064917h.
    • Christensen, L. K., T. J. Wallington, A. Guschin, and M. D. Hurley (1999), Atmospheric degradation mechanism of CF3OCH3, J. Phys. Chem. A, 103(21), 4202-4208, doi:10.1021/jp984455a.
    • Christensen, L. K., J. Sehested, O. J. Nielsen, M. Bilde, T. J. Wallington, A. Guschin, L. T. Molina, and M. J. Molina (1998), Atmospheric chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH radicals and fate of C4F9OCH2CH2O(•) and C4F9OCHO(•)CH3 radicals, J. Phys. Chem. A, 102(25), 4839-4845, doi:10.1021/jp981128u.
    • Christidis, N., M. D. Hurley, S. Pinnock, K. P. Shine, and T. J. Wallington (1997), Radiative forcing of climate change by CFC-11 and possible CFC-replacements, J. Geophys. Res., 102(D16), 19597-19609, doi:10.1029/97JD01137.
    • Clerbaux, C., and R. Colin (1994), Determination of the infrared cross-sections and global warming potentials of 1,1,2- trifluoroethane (HFC-143), Geophys. Res. Lett., 21(22), 2377-2380, doi:10.1029/94GL02365.
    • Clerbaux, C., R. Colin, P. C. Simon, and C. Granier (1993), Infrared cross-sections and global warming potentials of 10 alternative hydrohalocarbons, J. Geophys. Res., 98(D6), 10491-10497, doi:10.1029/93JD00390.
    • Collins, W. D., et al.(2006), Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.
    • Cometto, P. M., R. A. Taccone, J. D. Nieto, P. R. Dalmasso, and S. I. Lane (2010), Kinetic Study of OH Radical Reactions with CF3CCl = CCl2, CF3CCl = CClCF3 and CF3CF = CFCF3, Chemphyschem, 11(18), 4053-4059, doi:10.1002/cphc.201000430.
    • Cunnold, D. M., R. F. Weiss, R. G. Prinn, D. Hartley, P. G. Simmonds, P. J. Fraser, B. Miller, F. N. Alyea, and L. Porter (1997), GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992-1994, J. Geophys. Res., 102(D1), 1259-1269, doi:10.1029/96JD02973.
    • D'Anna, B., S. R. Sellevag, K. Wirtz, and C. J. Nielsen (2005), Photolysis study of perfluoro-2-methyl-3-pentanone under natural sunlight conditions, Environ. Sci. Technol., 39(22), 8708-8711, doi:10.1021/es048088u.
    • Dalmasso, P. R., R. A. Taccone, J. D. Nieto, M. A. Teruel, and S. I. Lane (2006), CH3OCF2CHFCl and CHF2OCF2CHFCl: Reaction with Cl atoms, atmospheric lifetimes, ozone depletion and global warming potentials, Atmos. Environ., 40(38), 7298-7307, doi:10.1016/j.atmosenv.2006.06.031.
    • Daniel, J. S., S. Solomon, and D. L. Albritton (1995), On the evaluation of halocarbon radiative forcing and global warming potentials, J. Geophys. Res., 100(D1), 1271-1285, doi:10.1029/ 94JD02516.
    • Derwent, R. G. (1990), Trace gases and their relative contribution to the greenhouse effect, Rep, Atomic Energy Research Establishment Harwell Oxon UK. Report AERE- R13716.
    • Di Lonardo, G., and G. Masciarelli (2000), Infrared absorption cross-sections and integrated absorption intensities of HFC-125 and HFC-143a, J. Quant. Spectrosc. Radiat. Transf., 66(2), 129-142, doi:10.1016/S0022-4073(99)00212-5.
    • Dillon, T. J., A. Horowitz, and J. N. Crowley (2008), The atmospheric chemistry of sulphuryl fluoride, SO2F2, Atmos. Chem. Phys., 8(6), 1547-1557, doi:10.5194/acp-8-1547-2008.
    • Douglass, A. R., R. S. Stolarski, M. R. Schoeberl, C. H. Jackman, M. L. Gupta, P. A. Newman, J. E. Nielsen, and E. L. Fleming (2008), Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes, J. Geophys. Res., 113, D14309, doi:10.1029/ 2007JD009575.
    • Drage, E. A., D. Jaksch, K. M. Smith, R. A. McPheat, E. Vasekova, and N. J. Mason (2006), FTIR spectroscopy and estimation of the global warming potential of CF3Br and C2F4, J. Quant. Spectrosc. Radiat. Transf., 98(1), 44-56, doi:10.1016/j.jqsrt.2005.05.071.
    • Dunn, D. S., K. Scanlon, and J. Overend (1982), The absolute intensities of the binary combination bands in the infraredspectrum of SF6, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 38(8), 841-847, doi:10.1016/0584-8539(82)80103-7.
    • Ellingson, R. G., and Y. Fouquart (1991), The intercomparison of radiation codes in climate models-An overview, J. Geophys. Res., 96(D5), 8925-8927, doi:10.1029/90JD01618.
    • Ellis, D. A., J. W. Martin, S. A. Mabury, M. D. Hurley, M. P. S. Andersen, and T. J. Wallington (2003), Atmospheric lifetime of fluorotelomer alcohols, Environ. Sci. Technol., 37(17), 3816-3820, doi:10.1021/es034136j.
    • Farman, J. C., B. G. Gardiner, and J. D. Shanklin (1985), Large losses of total ozone in Antarctica reveal seasonal ClOX/NOX interaction, Nature, 315(6016), 207-210, doi:10.1038/315207a0.
    • Fisher, D. A., C. H. Hales, W. C. Wang, M. K. W. Ko, and N. D. Sze (1990), Model-calculations of the relative effects of CFCs and their replacements on global warming, Nature, 344(6266), 513-516, doi:10.1038/344513a0.
    • Forster, P. M., and M. Joshi (2005), The role of halocarbons in the climate change of the troposphere and stratosphere, Clim. Change, 71(1-2), 249-266, doi:10.1007/s10584-005-5955-7.
    • Forster, P. M., R. S. Freckleton, and K. P. Shine (1997), On aspects of the concept of radiative forcing, Clim. Dyn., 13(7-8), 547-560, doi:10.1007/s003820050182.
    • Forster, P. M., et al. (2005), Resolution of the uncertainties in the radiative forcing of HFC-134a, J. Quant. Spectrosc. Radiat. Transf., 93(4), 447-460, doi:10.1016/j.jqsrt.2004.08.038.
    • Forster, P. M., et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing, In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis et al. Rep., 129-234 pp, Cambridge, United Kingdom and New York, NY, USA.
    • Forster, P. M., et al. (2011), Evaluation of radiation scheme performance within chemistry climate models, J. Geophys. Res., 116, D10302, doi:10.1029/2010JD015361.
    • Freckleton, R. S., E. J. Highwood, K. P. Shine, O. Wild, K. S. Law, and M. G. Sanderson (1998), Greenhouse gas radiative forcing: Effects of averaging and inhomogeneities in trace gas distribution, Q. J. R. Meteorol. Soc., 124(550), 2099-2127, doi:10.1002/qj.49712455014.
    • Fuglestvedt, J. S., T. K. Berntsen, O. Godal, R. Sausen, K. P. Shine, and T. Skodvin (2003), Metrics of climate change: Assessing radiative forcing and emission indices, Clim. Change, 58(3), 267-331, doi:10.1023/A:1023905326842.
    • Fuglestvedt, J. S., K. P. Shine, T. Berntsen, J. Cook, D. S. Lee, A. Stenke, R. B. Skeie, G. J. M. Velders, and I. A. Waitz (2010), Transport impacts on atmosphere and climate: Metrics, Atmos. Environ., 44(37), 4648-4677, doi:10.1016/j.atmosenv.2009.04.044.
    • Garland, N. L., L. J. Medhurst, and H. H. Nelson (1993), Potential chlorofluorocarbon replacements-OH reaction-rate forcings in three general circulation models: towards an improved metric of climate change, Clim. Dyn., 20(7-8), 843-854.
    • Kagann, R. H., J. W. Elkins, and R. L. Sams (1983), Absolute band strengths of halocarbons F-11 and F-12 in the 8-mu-mu to 16-mum region, J. Geophys. Res., 88(NC2), 1427-1432, doi:10.1029/ JC088iC02p01427.
    • Kiehl, J. T., and K. E. Trenberth (1997), Earth's annual global mean energy budget, Bull. Amer. Meteorol. Soc., 78(2), 197-208, doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.
    • Kim, K., R. S. McDowell, and W. T. King (1980), Integrated infrared intensities and transition moments in SF6, J. Chem. Phys., 73(1), 36-41, doi:10.1063/1.439883.
    • Ko, M., R. L. Shia, N. D. Sze, H. Magid, and R. G. Bray (1999), Atmospheric lifetime and global warming potential of HFC245fa, J. Geophys. Res.-Atmos., 104(D7), 8173-8181, doi:10.1029/1998JD100097.
    • Ko, M., N. D. Sze, W. C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rinsland (1993), Atmospheric sulfurhexafluoride-Sources, sinks and greenhouse warming, J. Geophys. Res., 98(D6), 10499-10507, doi:10.1029/93JD00228.
    • Kratz, D. P. (2008), The sensitivity of radiative transfer calculations to the changes in the HITRAN database from 1982 to 2004, J. Quant. Spectrosc. Radiat. Transf., 109(6), 1060-1080, doi:10.1016/j. jqsrt.2007.10.010.
    • Kunde, V. G., B. J. Conrath, R. A. Hanel, W. C. Maguire, C. Prabhaka, and V. V. Salomons (1974), NIMBUS-4 infrared spectroscopy experiment .2. Comparison of observed and theoretical radiances from 425-1450 cm-1, J. Geophys. Res., 79(6), 777-784, doi:10.1029/JC079i006p00777.
    • Kutsuna, S., L. Chen, T. Abe, J. Mizukado, T. Uchimaru, K. Tokuhashi, and A. Sekiya (2005), Henry's law constants of 2,2,2-trifluoroethyl formate, ethyl trifluoro acetate, and nonfluorinated analogous esters, Atmos. Environ., 39(32), 5884-5892, doi:10.1016/j.atmosenv.2005.06.021.
    • Lashof, D. A., and D. R. Ahuja (1990), Relative contributions of greenhouse gas emissions to global warming, Nature, 344(6266), 529-531, doi:10.1038/344529a0.
    • Laube, J. C., A. Keil, H. Bönisch, A. Engel, T. Röckmann, C. M. Volk, and W. T. Sturges (2012), Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases, Atmos. Chem. Phys., 13, 2779-2791, doi:10.5194/acp-13-2779-2013.
    • Le Bris, K., and K. Strong (2010), Temperature-dependent absorption cross-sections of HCFC-142b, J. Quant. Spectrosc. Radiat. Transf., 111(3), 364-371, doi:10.1016/j.jqsrt.2009.10.005.
    • Le Bris, K., R. Pandharpurkar, and K. Strong (2011), Mid-infrared absorption cross-sections and temperature dependence of CFC113, J. Quant. Spectrosc. Radiat. Transf., 112(8), 1280-1285, doi:10.1016/j.jqsrt.2011.01.023.
    • Le Bris, K., J. McDowell, and K. Strong (2012), Measurements of the infrared absorption cross-sections of HCFC-141b (CH3CFCl2), J. Quant. Spectrosc. Radiat. Transf., 113(15), 1913-1919, doi:10.1016/j.jqsrt.2012.05.004.
    • Li, Z. H., and P. Varanasi (1994), Measurement of the absorption cross-sections of CFC-11 at conditions representing various model atmospheres, J. Quant. Spectrosc. Radiat. Transf., 52(2), 137-144, doi:10.1016/0022-4073(94)90002-7.
    • Lovelock, J. E., and R. J. Maggs (1973), Halogenated hydrocarbons in and over Atlantic, Nature, 241(5386), 194-196, doi:10.1038/241194a0.
    • M.S.F./R.A.L. (n.d.) Molecular Spectroscopy Facility / Rutherford Appleton Laboratory, http://www.msf.rl.ac.uk, accessed April 2012.
    • Manne, A. S., and R. G. Richels (2001), An alternative approach to establishing trade-offs among greenhouse gases, Nature, 410(6829), 675-677, doi:10.1038/35070541.
    • Mashino, M., M. Kawasaki, T. J. Wallington, and M. D. Hurley (2000), Atmospheric degradation of CF3OCF = CF2: Kinetics and mechanism of its reaction with OH radicals and Cl atoms, J. Phys. Chem. A, 104(13), 2925-2930, doi:10.1021/jp9942264.
    • Massie, S. T., A. Goldman, D. G. Murcray, and J. C. Gille (1985), Approximate absorption cross-sections of F12, F11, C1ONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4, OAppl. ptics, 24(21), 3426-3427.
    • Maycock, A. C., and K. P. Shine (2012), Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes, J. Geophys. Res., 117, D13102, doi:10.1029/2012JD017484.
    • McCulloch, A., P. M. Midgley, and D. A. Fisher (1994), Distribution of emissions of chlorofluorocarbons (CFCs) 11, 12, 113, 114 and 115 among reporting and non-reporting countries in 1986, Atmos. Environ., 28(16), 2567-2582, doi:10.1016/1352-2310 (94)90431-6.
    • McDaniel, A. H., C. A. Cantrell, J. A. Davidson, R. E. Shetter, and J. G. Calvert (1991), The temperature-dependent, infraredabsorption cross-sections for the chlorofluorocarbons-CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115, J. Atmos. Chem., 12(3), 211-227, doi:10.1007/ BF00048074.
    • McDowell, R. S., B. J. Krohn, H. Flicker, and M. C. Vasquez (1986), Vibrational levels and anharmonicity in SF6 .1. Vibrational band analysis, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 42(2-3), 351-369, doi:10.1016/0584-8539(86)80199-4.
    • McPheat, R., and G. Duxbury (2000), Infrared absorption crosssections and integrated absorption intensities of chloroform and fluoroform vapour, J. Quant. Spectrosc. Radiat. Transf., 66(2), 153-167, doi:10.1016/S0022-4073(99)00214-9.
    • Mills, I. M., W. B. Person, J. R. Scherer, and B. Crawford (1958), Vibrational intensities .9. C2F6-Extension and revision, J. Chem. Phys., 28(5), 851-853, doi:10.1063/1.1744282.
    • Minschwaner, K., L. Hoffmann, A. Brown, M. Riese, R. Müller, and P. F. Bernath (2012), Stratospheric loss and atmospheric lifetimes of CFC-11 and CFC-12 derived from satellite observations, Atmos. Chem. Phys. Discuss., 12(11), 28733-28764, doi:10.5194/ acpd-12-28733-2012.
    • Molina, M. J., and F. S. Rowland (1974), Stratospheric Sink for Chlorofluoromethanes-Chlorine Atomic-Catalysed Destruction of Ozone, Nature, 249(5460), 810-812, doi:10.1038/ 249810a0.
    • Montzka, S. A., M. Krol, E. Dlugokencky, B. Hall, P. Jöckel, and J. Lelieveld (2011), Small Interannual Variability of Global Atmospheric Hydroxyl, Science, 331(6013), 67-69, doi:10.1126/ science.1197640.
    • Morcillo, J., L. J. Zamorano, and J. M. V. Heredia (1966), Infra-red intensities in CH2F2, CH2Cl2 and CF2Cl2, Spectrochim. Acta, 22(12), 1969-1980, doi:10.1016/0371-1951(66)80048-6.
    • Myhre, G., and F. Stordal (1997), Role of spatial and temporal variations in the computation of radiative forcing and GWP, J. Geophys. Res., 102(D10), 11181-11200, doi:10.1029/97JD00148.
    • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal (1998), New estimates of radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25(14), 2715-2718, doi:10.1029/ 98GL01908.
    • Myhre, G., C. J. Nielsen, D. L. Powell, and F. Stordal (1999), Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers, Atmos. Environ., 33(27), 4447-4458, doi:10.1016/S1352-2310(99)00208-3.
    • Myhre, G., F. Stordal, I. Gausemel, C. J. Nielsen, and E. Mahieu (2006), Line-by-line calculations of thermal infrared radiation representative for global condition: CFC-12 as an example, J. Quant. Spectrosc. Radiat. Transf., 97(3), 317-331, doi:10.1016/ j.jqsrt.2005.04.015.
    • Naik, V., A. K. Jain, K. O. Patten, and D. J. Wuebbles (2000), Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs, J. Geophys. Res., 105(D5), 6903-6914, doi:10.1029/1999JD901128.
    • Nanes, R., P. M. Silvaggio, and R. W. Boese (1980), Temperaturedependence of intensities of the 8-12 mm bands of CFCl3, J. Quant. Spectrosc. Radiat. Transf., 23(2), 211-220, doi:10.1016/ 0022-4073(80)90008-4.
    • radiative forcing, and global warming potential of four C4- hydrofluoroethers, Environ. Sci. Technol., 38(21), 5567-5576, doi:10.1021/es0497330.
    • Oyaro, N., S. R. Sellevag, and C. J. Nielsen (2005), Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoro ethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials, J. Phys. Chem. A, 109(2), 337-346, doi:10.1021/jp047860c.
    • Papadimitriou, V. C., R. K. Talukdar, R. W. Portmann, A. R. Ravishankara, and J. B. Burkholder (2008a), CF3CF = CH2 and (Z)-CF3CF = CHF: temperature dependent OH rate coefficients and global warming potentials, PCCP, 10(6), 808-820, doi:10.1039/b714382f.
    • Papadimitriou, V. C., M. R. McGillen, E. L. Fleming, C. H. Jackman, and J. B. Burkholder (2013), NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications, Geophys. Res. Lett., 40(2), 440-445, doi:10.1002/grl.50120.
    • Papadimitriou, V. C., R. W. Portmann, D. W. Fahey, J. Muhle, R. F. Weiss, and J. B. Burkholder (2008b), Experimental and Theoretical Study of the Atmospheric Chemistry and Global Warming Potential of SO2F2, J. Phys. Chem. A, 112(49), 12657-12666, doi:10.1021/jp806368u.
    • Papanastasiou, D. K., N. R. Carlon, J. A. Neuman, E. L. Fleming, C. H. Jackman, and J. B. Burkholder (2013), Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br, Geophys. Res. Lett., 40, 464-469, doi:10.1002/grl.50121.
    • Papasavva, S., S. Tai, K. H. Illinger, and J. E. Kenny (1997), Infrared radiative forcing of CFC substitutes and their atmospheric reaction products, J. Geophys. Res.-Atmos., 102(D12), 13643-13650, doi:10.1029/ 97JD01013.
    • Person, W. B., and S. R. Polo (1961), Infrared intensities of the fundamental frequencies of CF3Br, Spectrochim. Acta, 17(1), 101-111, doi:10.1016/0371-1951(61)80016-7.
    • Peters, G. P., B. Aamaas, T. Berntsen, and J. S. Fuglestvedt (2011), The integrated global temperature change potential (iGTP) and relationships between emission metrics, Environ. Res. Lett., 6(4), doi:10.1088/1748-9326/6/4/044021.
    • Petty, G. W. (2006), A first course in atmospheric radiation. Second Edition. Sundog Publishing.
    • Pinnock, S., and K. P. Shine (1998), The effects of changes in HITRAN and uncertainties in the spectroscopy on infrared irradiance calculations, J. Atmos. Sci., 55(11), 1950-1964, doi:10.1175/1520-0469(1998)055<1950:TEOCIH>2.0.CO;2.
    • Pinnock, S., M. D. Hurley, K. P. Shine, T. J. Wallington, and T. J. Smyth (1995), Radiative forcing of climate by hydrochlorofluorocarbons and hydrofluorocarbons, J. Geophys. Res., 100(D11), 23227-23238, doi:10.1029/95JD02323.
    • Plattner, G.-K., T. M. Stocker, P. Midgley, and M. Tignor (2009), IPCC Expert Meeting on the Science of Alternative Metrics: Meeting Report., IPCC Working Group I, Technical Support Unit, Rep., Bern, Switzerland.
    • Prather, M. J. (1996), Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth, Geophys. Res. Lett., 23(19), 2597-2600, doi:10.1029/96GL02371.
    • Prather, M. J. (2007), Lifetimes and time scales in atmospheric chemistry, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 365(1856), 1705-1726, doi:10.1098/rsta.2007.2040.
    • Prather, M. J., and C. M. Spivakovsky (1990), Tropospheric OH and the lifetimes of hydrochlorofluorocarbons, J. Geophys. Res., 95(D11), 18723-18729, doi:10.1029/JD095iD11p18723.
    • Prather, M. J., and J. Hsu (2008), NF3, the greenhouse gas missing from Kyoto, Geophys. Res. Lett., 35, L12810, doi:10.1029/2008GL034542.
    • Prather, M. J., and J. Hsu (2010), NF3, the greenhouse gas missing from Kyoto, Geophys. Res. Lett., 37, L11807, doi:10.1029/ 2010GL043831.
    • Prather, M. J., C. D. Holmes, and J. Hsu (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.
    • Rajakumar, B., R. W. Portmann, J. B. Burkholder, and A. R. Ravishankara (2006), Rate coefficients for the reactions of OH with CF3CH2CH3 (HFC-263fb), CF3CHFCH2F (HFC245eb), and CHF2CHFCHF2 (HFC-245ea) between 238 and 375 K, J. Phys. Chem. A, 110(21), 6724-6731, doi:10.1021/jp056248y.
    • Ramanathan, V. (1975), Greenhouse effect due to chlorofluorocarbons-Climatic implications, Science, 190(4209), 50-51, doi:10.1126/science.190.4209.50.
    • Ramanathan, V., R. J. Cicerone, H. B. Singh, and J. T. Kiehl (1985), Trace gas trends and their potential role in climate change, J. Geophys. Res., 90(ND3), 5547-5566, doi:10.1029/JD090iD03p05547.
    • Ramanathan, V., et al. (1987), Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases, Rev. Geophys., 25(7), 1441-1482, doi:10.1029/RG025i007p01441.
    • Ravishankara, A. R., S. Solomon, A. A. Turnipseed, and R. F. Warren (1993), Atmospheric lifetimes of long-lived halogenated species, Science, 259(5092), 194-199, doi:10.1126/science.259.5092.194.
    • Ravishankara, A. R., A. A. Turnipseed, N. R. Jensen, S. Barone, M. Mills, C. J. Howard, and S. Solomon (1994), Do hydrofluorocarbons destroy stratospheric ozone, Science, 263(5143), 71-75, doi:10.1126/science.263.5143.71.
    • Reisinger, A., M. Meinshausen, and M. Manning (2011), Future changes in global warming potentials under representative concentration pathways, Environ. Res. Lett., 6(2), doi:10.1088/1748-9326/6/2/024020.
    • Reisinger, A., M. Meinshausen, M. Manning, and G. Bodeker (2010), Uncertainties of global warming metrics: CO2 and CH4, Geophys. Res. Lett., 37, L14707, doi:10.1029/2010GL043803.
    • RETRO (2006), REanalysis of the TROpospheric chemical composition over the past 40 years. http://retro.enes.org, accessed 15th of March 2012, edited.
    • Rigby, M., et al. (2013), Re-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends, Atmos. Chem. Phys., 13, 2691-2702, doi:10.5194/acp-13-2691-2013.
    • Rinsland, C. P., S. W. Sharpe, and R. L. Sams (2003), Temperature-dependent absorption cross-sections in the thermal infrared bands of SF5CF3, J. Quant. Spectrosc. Radiat. Transf., 82(1-4), 483-490, doi:10.1016/S0022-4073(03)00172-9.
    • Robson, J. I., L. K. Gohar, M. D. Hurley, K. P. Shine, and T. J. Wallington (2006), Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride, Geophys. Res. Lett., 33, L10817, doi:10.1029/2006GL026210.
    • Roehl, C. M., D. Boglu, C. Bruhl, and G. K. Moortgat (1995), Infrared band intensities and global warming potentials of CF4, semiempirical scale factors, J. Phys. Chem., 100(41), 16502-16513, doi:10.1021/jp960976r.
    • Sellevag, S. R., T. Kelly, H. Sidebottom, and C. J. Nielsen (2004a), A study of the IR and UV-Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF3CHO and CF3CH2CHO, PCCP, 6(6), 1243-1252, doi:10.1039/b315941h.
    • Sellevag, S. R., C. J. Nielsen, O. A. Sovde, G. Myhre, J. K. Sundet, F. Stordal, and I. S. A. Isaksen (2004b), Atmospheric gas-phase degradation and global warming potentials of 2-fluoro ethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol, Atmos. Environ., 38(39), 6725-6735, doi:10.1016/j.atmosenv.2004.09.023.
    • Sellevåg, S. R., B. D'Anna, and C. J. Nielsen (2007), Infrared Absorption Cross-Sections and Estimated Global Warming Potentials of CF3CH2CH2OH, CHF2CF2CH2OH, CF3CF2CH2OH, CF3CHFCF2CH2OH, and CF3CF2CF2CH2OH, Asian Chemistry Letters, 11(1-2), 33-40.
    • Shine, K. P. (2009), The global warming potential-the need for an interdisciplinary retrial, Clim. Change, 96(4), 467-472, doi:10.1007/s10584-009-9647-6.
    • Shine, K. P., and P. M. D. Forster (1999), The effect of human activity on radiative forcing of climate change: a review of recent developments, Glob. Planet. Change, 20(4), 205-225, doi:10.1016/S0921- 8181(99)00017-X.
    • Shine, K. P., J. S. Fuglestvedt, K. Hailemariam, and N. Stuber (2005a), Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases, Clim. Change, 68(3), 281-302, doi:10.1007/s10584-005-1146-9.
    • Shine, K. P., T. K. Berntsen, J. S. Fuglestvedt, R. B. Skeie, and N. Stuber (2007), Comparing the climate effect of emissions of short- and long-lived climate agents, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 365(1856), 1903-1914, doi:10.1098/rsta.2007.2050.
    • Shine, K. P., L. K. Gohar, M. D. Hurley, G. Marston, D. Martin, P. G. Simmonds, T. J. Wallington, and M. Watkins (2005b), Perfluorodecalin: global warming potential and first detection in the atmosphere, Atmos. Environ., 39(9), 1759-1763.
    • Sihra, K., M. D. Hurley, K. P. Shine, and T. J. Wallington (2001), Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons, J. Geophys. Res., 106(D17), 20493-20505, doi:10.1029/2000JD900716.
    • Smith, K., D. Newnham, M. Page, J. Ballard, and G. Duxbury (1996), Infrared band strengths and absorption cross-sections of HFC-32 vapour, J. Quant. Spectrosc. Radiat. Transf., 56(1), 73-82, doi:10.1016/0022-4073(96)00019-2.
    • Smith, K., D. Newnham, M. Page, J. Ballard, and G. Duxbury (1998), Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour, J. Quant. Spectrosc. Radiat. Transf., 59(3-5), 437-451, doi:10.1016/ S0022-4073(97)00114-3.
    • Spivakovsky, C. M., et al. (2000), Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105(D7), 8931-8980, doi:10.1029/ 1999JD901006.
    • Stolarski, R., R. Bojkov, L. Bishop, C. Zerefos, J. Staehelin, and J. Zawodny (1992), Measured trends in stratospheric ozone, Science, 256(5055), 342-349, doi:10.1126/science.256.5055.342.
    • Stoppa, P., A. P. Charmet, N. Tasinato, S. Giorgianni, and A. Gambi (2009), Infrared Spectra, Integrated Band Intensities, and Anharmonic Force Field of H2C = CHF, J. Phys. Chem. A, 113(8), 1497-1504, doi:10.1021/jp808556e.
    • Stordal, F., I. S. A. Isaksen, and K. Horntveth (1985), A diabatic circulation two-dimensional model with photochemistry-Simulations of ozone and long-lived tracers with surface sources, J. Geophys. Res., 90(ND3), 5757-5776, doi:10.1029/JD090iD03p05757.
    • Sturges, W. T., T. J. Wallington, M. D. Hurley, K. P. Shine, K. Sihra, A. Engel, D. E. Oram, S. A. Penkett, R. Mulvaney, and C. A. M. Brenninkmeijer (2000), A potent greenhouse gas identified in the atmosphere: SF5CF3, Science, 289(5479), 611-613, doi:10.1126/science.289.5479.611.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article