Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Barrat, M. Barthe´lemy, and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge Univesity Press, 2008).
    • [2] M. Newman, Networks. An Introduction (Oxford Univesity Press, 2010).
    • [3] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, Cambridge, 2010).
    • [4] C. Butts, Science 325, 414 (2009).
    • [5] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 036104 (2002).
    • [6] R. Cohen, S. Havlin, and D. ben Avraham, Phys Rev. Lett. 91 (2003).
    • [7] M. Kitsak, L. K. Gallos, S. Havlin, and H. A. Makse, Nature Physics 6, 888 (2010).
    • [8] M. Morris, Nature 365, 437 (1993).
    • [9] M. Morris, Sexually Transmitted Diseases, K.K. Holmes, et al. Eds. (McGraw-Hill, 2007).
    • [10] A. Clauset and N. Eagle, in DIMACS Workshop on Computational Methods for Dynamic Interaction Networks (2007), pp. 1-5.
    • [11] A. Vespignani, Nature Physics 8, 32 (2012).
    • [12] L. E. C. Rocha, F. Liljeros, and P. Holme, PLoS Comput Biol 7, e1001109 (2011).
    • [13] L. Isella, J. Stehle´, A. Barrat, C. Cattuto, J.-F. Pinton, and W. V. den Broeck, J. Theor. Biol 271, 166 (2011).
    • [14] J. Stehle´, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Re´gis, J.-F. Pinton, N. Khanafer, W. Van den Broeck, et al., BMC Medicine 9 (2011), URL http:// www.biomedcentral.com/1741-7015/9/87.
    • [15] M. Karsai, M. Kivela¨, R. K. Pan, K. Kaski, J. Kerte´sz, A.-L. Baraba´si, and J. Sarama¨ki, Phys. Rev. E 83, 025102 (2011), URL http://link.aps.org/doi/10.1103/ PhysRevE.83.025102.
    • [16] G. Miritello, E. Moro, and R. Lara, Phys. Rev. E 83, 045102 (2011), URL http://link.aps.org/doi/10.1103/ PhysRevE.83.045102.
    • [17] M. Kivela, R. Kumar Pan, K. Kaski, J. Kertesz, J. Saramaki, and M. Karsai (2011), arXiv:1112.4312v1.
    • [18] N. Fujiwara, J. Kurths, and A. D´ıaz-Guilera, Physical Review E 83, 025101 (2011).
    • [19] R. Parshani, M. Dickison, R. Cohen, H. E. Stanley, and S. Havlin, EPL (Europhysics Letters) 90, 38004 (2010), URL http://stacks.iop.org/0295-5075/ 90/i=3/a=38004.
    • [20] P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Colizza, PLoS ONE 6, e19869 (2011).
    • [21] A. Panisson, A. Barrat, C. Cattuto, W. V. den Broeck, G. Ruffo, and R. Schifanella, Ad Hoc Networks 10 (2011).
    • [22] A. Baronchelli and A. D´ıaz-Guilera, Phys. Rev. E 85, 016113 (2012).
    • [23] M. Starnini, A. Baronchelli, A. Barrat, and R. PastorSatorras, Phys. Rev. E 85, 056115 (2012).
    • [24] R. Pfitzner, I. Scholtes, A. Garas, C. Tessone, and F. Schweitzer, Phys. Rev. Lett. 110, 19 (2013).
    • [25] M. Karsai, N. Perra, and A. Vespignani, arXiv:1303.5966 (2013).
    • [26] T. Hoffmann, M. Porter, and R. Lambiotte, Physical Review E 86, 046102 (2012).
    • [27] Z. Toroczkai and H. Guclu, Physica A 378 (????).
    • [28] N. Perra, B. Gonc¸alves, R. Pastor-Satorras, and A. Vespignani, Scientific Reports 2, 469 (2012).
    • [29] B. Ribeiro, N. Perra, and A. Baronchelli, Scientific Reports 3, 3006 (2013).
    • [30] N. Perra, A. Baronchelli, D. Mocanu, B. Gonc¸alves, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012).
    • [31] S. Liu, A. Baronchelli, and N. Perra, Phy. Rev. E 87 (2013).
    • [32] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 87, 062807 (2013).
    • [33] M. Keeling and P. Rohani, Modeling Infectious Disease in Humans and Animals (Princeton University Press, 2008).
    • [34] Y. Wang, D. Chakrabarti, G. Wang, and C. Faloutsos, In Proc 22nd International Symposium on Reliable Distributed Systems pp. 25-34 (2003).
    • [35] C. Castellano and R. Pastor-Satorras, Phys. Rev. Lett. 105, 218701 (2010).
    • [36] R. Durrett, Proc. Nat. Acad. Sci. 107, 4491 (2010).
    • [37] B. Prakash, H. Tong, M. Valler, and C. Faloutsos, Machine Learning and Knowledge Discovery in Databases Lecture Notes in Computer Science 6323, 99 (2010).
    • [38] M. Starnini, A. Machens, C. Cattuto, A. Barrat, and R. Pastor-Satorras, Journal of Theoretical Biology 337, 89 (2013).
    • [39] S. Lee, L. Rocha, F. Liljeros, and P. Holme, PLoS ONE 7, e36439 (2012).
    • [40] T. Takaguchi, N. Sato, K. Yano, and N. Masuda, New J. Phys. 14, 093003 (2012).
    • [41] J. Tang, C. Mascolo, M. Musolesi, and V. Latora, in Proceedings of IEEE 12th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM 11) (2011).
    • [42] N. Masuda and P. Holme, F1000Prime Reports 5 (2013).
    • [43] The activities are defined in the interval a 1 implying finite moments for any power-law activity distribution, see SI for further details.
    • [44] The value of p and ac are linked by the relation p =
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | ICES: Large: Meme Diffusion...
  • NSF | CDI-Type II: Collaborative ...

Cite this article