LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QE

Classified by OpenAIRE into

arxiv: Physics::Geophysics, Astrophysics::Earth and Planetary Astrophysics
Studying the thermal history of Earth's mantle can provide a better understanding of Earth's evolution on a planetary scale. In this work, several mechanisms affecting the thermal evolution of Earth's mantle are investigated. The Nusselt-Rayleigh power law relationship (Nu(Ra)) was calculated from the results of a series of models with three dimensional spherical geometry and free slip boundary conditions. Basally and internally heated convection was examined. For Nu(Ra) = aRaP, (5 was found to be 0.294 0.004 for basally heated systems and 0.337 0.009 for internally heated systems. Model cases were extended to Rayleigh numbers higher than any previous study (109). 0 was not observed to reduce at high Rayleigh number, therefore, as this mechanism cannot be invoked to moderate thermal flux in the past, the influence of time dependent layering on thermal evolution was considered. A parameter space exploration of Rayleigh number and 660 km phase change Clapeyron slope demonstrates that present day Earth could have a partially layered mantle and that full two layer convection is possible in the past at higher Rayleigh numbers. Evolution of mantle temperature was modelled, with the models cooling from an initially layered state. As layering breaks down at high Rayleigh numbers, the mantle passes through a wide domain of partial layering before achieving whole mantle convection. The partially layered regime is characterised by a series of avalanches from the upper into the lower mantle. When an avalanche reaches the core mantle boundary it triggers a pulse of plume-like instabilities in the opposing hemisphere, producing a pulse in global surface heat flux. As the mantle cools, the avalanche-pulse events evolve towards higher frequency and lower magnitude. If this mechanism occurs within Earth, the gradualist view of Earth's thermal evolution may need to yield to a more event-driven model. The mechanics of avalanche-pulse events could also provide an explanation for geochemical observations of periodic maxima in melt extraction from the mantle. The modelling of Earth's mantle produces large data volumes. A distributed computing solution to the data storage problem was investigated. The system, MantleStor, is based on Peer-to-Peer technology and intended to operate over hundreds of standard workstations. A trial implementation demonstrates that MantleStor is able to safely store data in a challenging network environment. Data integrity was maintained with over 30% loss of storage machines. MantleStor is an example of an e-Science project, a discussion of e-Science and its implications is presented.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 4 E volvin g C onvective R egim es in E arth 's M antle 4.1 A b s tr a c t......................................................................................................... 4.2 In tro d u ctio n ................................................................................................... 4.3 Simulation M ethods...................................................................................... 4.3.1 Cases M o d e lle d ................................................................................ 4.4 R e su lts............................................................................................................. 4.4.1 Defining the Critical Ra for T r a n s itio n ...................................... 4.4.2 Manner of T ra n sitio n ...................................................................... 4.4.3 Evolving m odels................................................................................ 4.5 D iscu ssio n ...................................................................................................... 4.6 C onclusion......................................................................................................
    • • A 4 page version of Chapter 5 has been published: Wolstencroft, M., Rana, O. F. Davies, J. H. (2006) Distributed Storage of High­Volume Environmental Simulation Data: Mantle Modelling. IE EE /W IC /A C M International Conference on Web Intelligence. Hong Kong, IEEE Computer Society.
    • Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., Douceur, J. R., Howell, J., Lorch, J. R., Theimer, M. & Wattenhofer, R. R (2002), FARSITE: Federated, Available, and Reliable Storage for an Incompletely Trusted Environment, in '5th Symposium on Operating Systems Design and Implementation', The USENIX Association, Boston, Massachusetts.
    • Allegre, C. J. (2002), 'The evolution of mantle mixing', Philos. T. Roy. Soc. A 360,1411­1431.
    • Allegre, C. J., Hofmann, A. Sz O'Nions, K. (1996), 'The Argon constraints on mantle structure', Geophys. Res. Let. 23, 3555­3557.
    • Allegre, C. J., Standacher, T., Sarda, P. & Kurz, M. (1983), 'Constraints on evolution of E arth's mantle from rare gas systemics', Nature 303, 762­766.
    • Allegre, C. J. & Turcotte, D. L. (1986), 'Implications of a two­component marble­cake mantle', Nature 323, 123­127.
    • Amos, J. (2008), “ Climate crisis' needs brain gain'. 8/09/2008. URL: h ttp ://n e w s .b b c .c o .U k /l/h i/s c i/te c h /7 6 0 3 2 5 7 .s tm
    • Andersen, D. G., Balakrishnan, H., Kaashoek, M. F. Sz Morris, R. (2001), Resilient overlay networks, in 'Symposium on Operating Systems Principles', pp. 131­145. URL: citeseer. ist.psu. edu/andersenOl resilient, html
    • Anderson, D. L. (2005), Scoring hotspots: The plume and plate paradigms, Vol. 388 of Plates, plumes and paradigms: Geological Society of America Special Paper, Geol. Soc. Am.
    • Ballentine, C. J., Marty, B., Lollar, B. S. & Cassidy, M. (2005), 'Neon isotopes constrain convection and volatile origin in the Earths mantle', Nature 433, 33­38.
    • Batten, C., Barr, K., Saraf, A. & Treptin, S. (2001), 'pStore: A secure peer­to­peer backup system'. URL: citeseer.ist.psu. edu/battenOlpstore.html
    • Baumgardner, J. R. (1985), 'Three dimensional treatm ent of convective flow in the Earths mantle.', J. Stat. Phys. 39, 501­511.
    • Bennett, V. C., Brandon, A. D. & Nutman, A. R (2007), 'Coupled142Nd­143Nd isotopic evidence for Hadean mantle dynamics', Science 318, 1907­1910.
    • Bercovici, D., Schubert, G. & Glatzmaier, G. A. (1992), 'Three­dimensional convection of an infinite­Prandtl­number compressible fliud in a basally heated spherical shell', J. Fluid Mech. 239, 683­719.
    • Bercovici, D., Schubert, G., Glatzmaier, G. A. & Zebib, A. (1989), 'Three­dimensional thermal convection in a spherical shell', J. Fluid Mech. 206, 75­104.
    • Berry, A. J., Danyushevsky, L. V., O 'Neill, H. S. C.,Newville, M. & Sutton, S. R. (2008), 'Oxidation state of iron in komatiiticmelt inclusions indicates hot Archean mantle', Nature 455, 960­963.
    • Boyet, M. & Carlson, R. W. (2005), '142Nd Evidence for early (>4.53 Ga) global differentiation of the silicate E arth ', Science 309, 576­581.
    • Boyet, M. & Carlson, R. W. (2006), 'A new geochemical model for the E arth's mantle inferred from 146Sm ­ 142Nd systematics', Earth Planet. Sci. Lett. 250, 254­268.
    • Bunge, H. R & Baumgardner, J. R. (1995), 'Mantle convection modeling on parallel virtual machines', Comput. Phys. 9, 207­215.
    • Bunge, H. R, Richards, M. A. & Baumgardner, J. R. (1997), 'A sensitivity study of three­dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth­dependent viscosity, heating mode and an endothermic phase change', J. Geophys. Res. 102(B6), 11991­12007.
    • Busse, F. H. (1989), Fundamentals of Thermal Convection, Mantle Convection, Plate Tectonics and Global Dynamics, Gordon and Breach Publ., New York.
    • Butler, S. L. & Peltier, W. R. (2000), 'On scaling relations in time­dependent mantle convection and the heat transfer constraint on layering', J. Geophys. Res. 105, 3175­3208.
    • Butler, S. L. & Peltier, W. R. (2002), 'Thermal evolution of Earth: Models with timedependent layering of mantle convection which satisfy the Urey ratio constraint', J. Geophys. Res. 107, doi: 10.1029/20000JB000018.
    • Carvazzoni, C., Chiarotti, G., Scandolo, S., Tosatti, E., Bernasconi, M. & Parrinello, M. (1999), 'Superionic and metallic states of water and ammonia at giant planet conditions', Science 283, 44­46.
    • Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.­Z., Zaleski, S. &; Zanetti, G. (1989), 'Scaling of hard thermal turbulance in Rayleigh­Benard convection', J. Fluid Mech. 204, 1­30.
    • Choblet, G. & Sotin, C. (2000), '3d therm al convection with variable viscosity: can transient cooling be described by a quasi­static scaling law?', Phy. Earth Planet. In. 119, 321­336.
    • Chopelas, A., Boehler, R. & Ko, T. (1994), 'Thermodynamics and behaviour of 7 ~Mg2Si0 4 at high­pressure ­ implications for Mg2Si0 4 phase­equilibrium', Phy. Chem. Min. 21, 351­359.
    • Condie, K. C. (2004), 'Supercontinents and superplume events: distinguishing signals in the geologic record', Phy. Earth Planet. In. 146, 319­332.
    • Condie, K. C., Marais, D. J. k Abbott, D. (2001), 'Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?', Precambrian Res. 106, 239­260.
    • Courtillot, V. k Olson, P. (2007), 'Mantle plumes link magnetic superchrons to phanerozoic mass depletion events', Earth Planet. Sci. Lett. 260, 495­504.
    • Davies, D. R. (2008), Applying multi­resolution numerical methods to geodynamics, PhD thesis, Cardiff University.
    • Davies, G. F. (1980), 'Thermal histories of convective E arth models and constraints on radiogenic heat production in the E arth ', J. Geophys. Res. 85, 2517­2530.
    • Davies, G. F. (1995), 'Punctuated tectonic evolution of the E arth', Earth Planet. Sci. Lett. 136, 363­379.
    • Davies, G. F. (1999), Dynamic earth : plates, plumes, and mantle convection, Cambridge University Press, Cambridge, New York.
    • Davies, J. H. (2005), 'Steady plumes produced by downwellings in earth­like vigor spherical whole mantle convection models', Geochem. Geophys. Geosys. 6 , doi: 10.1029/2005GC001042.
    • Davies, J. H. k Bunge, H. P. (2006), 'Are splash plumes the origin of minor hotspots?', Geology 34, 349­352.
    • Davies, J. H. k Stevenson, D. J. (1992), 'Physical model of source region of subduction zone volcanics', J. Geophys. Res. 97, 2037­2070.
    • Elliott, T., Thomas, A., Jeffcoate, A. k Nui, Y. (2006), 'Lithium isotope evidence for subduction­enriched mantle in the source of mid­ocean­ridge basalts', Nature 443, 565­568.
    • Flanagan, M. P. & Shearer, P. M. (1999), 'A map of topography on the 410­km discontinuity from PP precursors', Geophys. Res. Lett. 26, 549­552.
    • Forte, A. M., Mitrovica, J. X. & Espesset, A. (2002), 'Geodynamic and seismic constraints on the thermochemical structure and dynamics of convection in the deep mantle', Philos. T. Roy. Soc. A 360, 2521­2543.
    • Frimmel, H. E. (2008), 'E arth 's continental crustal gold endowment', Earth Planet. Sci. Lett. 267, 45­55.
    • Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. (1992), 'Subducting slabs stagnant in the mantle transition zone', J. Geophys. Res. 97, 4809­4822.
    • Giannandrea, E. & Christensen, U. R. (1993), 'Variable viscosity convection experiments with a stress­free upper boundary and implications for the heat transport in the E arth's mantle', Phy. Earth Planet. In. 78, 139­152.
    • Goncharov, A. F., Struzhkin, V. V. & Jacobsen, S. D. (2006), 'Reduced radiative conductivity of low­spin (Mg,Fe)0 in the lower m antle', Science 312, 1205­1208.
    • Gong, L. (2001), 'JXTA: a network programming environment', IEEE Internet Comput. 5, 88­95.
    • Graham, D. W., Blichert­Toft, J., Russo, C. J., Rubin, K. H. & Alberede, F. (2006), 'Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast indian ridge basalts', Nature 440, 199­202.
    • Gurnis, M. (1989), 'A reassessment of the heat transport by variable viscosity convection with plates and lids', Geophys. Res. Lett. 16, 179­182.
    • Hansen, U. & Ebel, A. (1984), 'Experiments with a numerical model related to mantle convection: boundary layer behaviour of small­ and large scale flows', Phy. Earth Planet. In. 36, 374­390.
    • Heath, A. (2002), 'MantleVis'. URL: http://pcwww.liv. ac.uk/~aeh% 20/Software/M antle Vis.htm
    • Hofmeister, A. M. (1999), 'Mantle values of thermal conductivity and the geotherm from phonon lifetimes', Science 283, 1699­1706.
    • Ito, E. & Takahashi, E. (1989), 'Postspinel transformations in the system mg2sio4­ fe2sio4 and some geophysical implications', Journal of Geophysical Research­Solid Earth and Planets 94(B8), 10637­10646.
    • Iwase, Y. h Honda, S. (1997), 'An interpretation of the Nusselt­Rayleigh number relationship for convection in a spherical shell', Geophys. J. Int. 130, 801­804.
    • Johari, G. P. &; O, A. (2007), 'Vibrational and relaxational properties of crystalline and amorphous ices', Thermochim. Acta 461, 14­43.
    • Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C. & Kirst, J. (2008), 'Optical Images of an exosolar planet 25 light­years from E arth', Science Express . doi: 10.1126/science. 1166609.
    • Katsura, T., Yamada, H., Shinmei, T., Kubo, A., Ono, S., Kanzaki, M., Yoneda, A., Walter, M. J., Ito, E., Urakawa, S., Funakoshi, K. & Utsumi, W. (2003), 'Postspinel transition in Mg2Si0 4 determined by high P­T in situ X­ray diffractometry', Phy. Earth Planet. In. 136, 11­24.
    • Kellogg, L. H., Hager, B. H. & Van der Hilst, R. (1999), 'Compositional stratifcation in the deep mantle', Science 283, 1881­1884.
    • King, S. D., Raefsky, A. & Hager, B. H. (1990), 'ConMan: vectorizing a finite element code for incompressible two­dimensional convection in the Earths mantle', Phys. Earth Planet. Int. 59, 195­207.
    • Korenaga, J. (2003), 'Energetics of mantle convection and the fate of fossil heat', Geophys. Res. Lett. 30, 1437.
    • Korenaga, J. (2005), 'Archean geodynamics and the thermal evolution of E arth', AGU Mono., Archean Geodynamic Processes .
    • Korenaga, J. (2008), 'Urey ratio and the structure and evolution of E arth's mantle', Rev. Geophys. 46. doi:10.1029/2007RG000241.
    • Korenaga, J. & Jordan, T. H. (2002), 'Onset of convection with temperature and depth­dependent viscosity', Geophys. Res. Lett. 29, 1923.
    • Kumar, A., Heaman, L. M. & Manikyamba, C. (2007), 'Mesoproterozoic kimberlites in south India: A possible link to ~1.1 Ga global magmatism', Precambrian Res. 154,192­204.
    • Kurz, M. D., Jenkins, W. J. & Hart, S. R. (1982), 'Helium isotope systematics of oceanic islands and mantle heterogeneities', Nature 297, 43­47.
    • Labrosse, S. (2002), 'Hotspots, mantle plumes and core heat loss', Earth Planet. Sci. Lett. 199, 147­156.
    • Labrosse, S., Hernlund, J. W. & Coltice, N. (2007), 'A crystallizing dense magma ocean at the base of the Earths m antle', Nature 450, 866­869.
    • Labrosse, S. & Jaupart, C. (2007), 'Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics', Earth Planet. Sci. Lett. 260, 465­481.
    • Lowman, J., King, S. D. & Gable, C. W. (2004), 'Steady plumes in viscously stratified, vigorously convecting, three­dimensional numerical mantle convection models with mobile plates', Geochem. Geophys. Geosys. 5(1).
    • Machetel, P. Sz Humler, E. (2003), 'High mantle tem perature during cretaceous avalanche', Earth Planet. Sci. Lett. 208, 125­133.
    • Machetel, P., Thoraval, C. & Brunet, D. (1995), 'Spectral and geophysical consequences of 3­D spherical mantle convection with an endothermic phase change at the 670 km discontinuity', Phy. Earth Planet. In. 88, 43­51.
    • Machetel, P. Sz Weber, P. (1991), 'Interm ittent layered convection in a model mantle with an endothermic phase­change at 670 km ', Nature 350(6313), 55­57.
    • Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafreniere, D. Sz Doyon, R. (2008), 'Direct imaging of multiple planets orbiting the star HR 8799', Science Express . doi: 10.1126/science. 1166585.
    • Mckenzie, D. P., Roberts, J. M. Sz Weiss, N. O. (1974), 'Convection in earths mantle ­ towards a numerical­simulation', Journal of Fluid Mechanics 62(F ebll), 465­538.
    • Mckenzie, D. & Weiss, N. (1975), 'Speculations on thermal and tectonic history of earth', Geophys. J. Roy. Astron. Soc. 42(1), 131­174.
    • Montelli, R., Nolet, G., Dahlen, F. A. Sz Masters, G. (2006), 'A catalogue of deep mantle plumes: New results from finite­frequency tomography', Geochem. Geophys. Geosys 7(11).
    • Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. Sz Hung, S.­H. (2004), 'Finite frequency tomography reveals a variety of plumes in the mantle', Science 303, 338­343.
    • Moresi, L. N. & Solomatov, V. S. (1995), 'Numerical investigation of 2d convection with extremely large viscosity variations', Physics of Fluids 7, 2154­2162.
    • Nakagawa, T. Sz Tackley, P. J. (2004), 'Effects of thermo­chemical mantle convection on the thermal evolution of the Earths core', Earth Planet. Sci. Lett. 220, 107­119.
    • Nataf, H. C. (2000), 'Seismic imaging of mantle plumes', Annu. Rev. Earth Planet. Sci. 28, 391­417.
    • Nature, Editorial (2008), 'Community cleverness required', Nature 455, 1.
    • Nelson, S. (2008), 'The Harvard computers', Nature 455, 36­37.
    • Nimmo, F., Price, G. D., Brodholt, J. Sz Fubbins, D. (2004), 'The influence of potassium on core and geodynamo evolution', Geophys. J. Int. 156, 363­376.
    • Oldham, D. Sz Davies, J. H. (2004), 'Numerical investigation of layered convection in a three­dimensional shell with application to planetary mantles', Geochem. Geophys. Geosys. (12), doi:10.1029/2003GC000603.
    • Oldham, D. N. (2004), On the possibility of layered mantle convection; numerical simulations in a spherical geometry, PhD thesis, Cardiff University.
    • Olsen, P. (1987), 'A comparison of heat transfer laws for mantle convection at very high Rayleigh numbers', Phy. Earth Planet. In. 48, 153­160.
    • O'Nions, R. K. Sz Oxburgh, E. R. (1983), 'Heat and helium in the E arth', Nature 306, 429­431.
    • Reese, C. C., Solomatov, V. S., Baumgardner, J. R. & Yang, W. S. (1999), 'Stagnant lid convection in a spherical shell', Phy. Earth Planet. In. 116, 1­7.
    • Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H. & Kubiatowicz, J. (2001), 'Maintenance­free global d ata storage', Internet Computing, IEEE pp. 40­49. 1089­7801.
    • Richter, F. M., Nataf, H. C. & Daly, S. F. (1983), 'Heat­transfer and horizontally averaged temperature of convection with large viscosity variations', J. Fluid Mech. 129(Apr), 173­192.
    • Ringwood, A. E. (1994), 'Role of the transition zone and 660 km discontinuity in mantle dynamics', Phy. Earth Planet. In. 86, 5­24.
    • Rino, S., Komiya, T., Windley, B. F., Katayama, I., Motoki, A. & Hirata, T. (2004), 'Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the early Precambrian', Phys. Earth Planet. In. 146, 369­394.
    • Ripeanu, M. (2001), 'Peer­to­peer architecture case study: Gnutella network'. U RL: citeseer. ist.psu. edu/ripeanuOlpeertopeer. html
    • Sanz, E., Vega, C., Abascal, J. L. F. & MacDowell, L. G. (2004), 'Phase diagram of water from computer simulation', Phys. Rev. Lett. 92(25).
    • Schubert, G., Cassen, P. & Young, R. E. (1979), 'Subsolidus convective cooling histories of terrestrial planets', Icarus 38, 192­211.
    • Sharpe, H. N. & Peltier, W. R. (1978), 'Parameterized mantle convection and the E arth's thermal history', Geophys. Res. Lett. 5, 737­740.
    • Shearer, P. M. & Masters, G. M. (1992), 'Global mapping of tomography on the 660­km discontinuity', Nature 355, 791­796.
    • Simmons, N. A., Forte, A. M. & Grand, S. P. (2006), 'Constraining mantle flow with seismic and geodynamic data: A joint approach', Earth Planet. Sci. Lett. 246,109­124.
    • Simms, S. G., Pike, G. G. & Balog, D. (2007), Wide area filesystem performance using Lustre on the TeraGrid, in 'TeraGrid 2007 Conference,', Madison, WI.
    • Solomatov, V. S. (1995), 'Scaling of tem perature­ and stress­dependent viscosity convection', Phys. Fluids 7, 266­274.
    • Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardener, J. R. & Richards, M. A. (2003), 'An early lunar core dynamo driven by thermochemical mantle convection', Nature 421, 143­146.
    • Stein, M. & Hofmann, A. W. (1994), 'Mantle plumes and episodic crustal growth', Nature 372(6501), 63­68.
    • Steinbach, V., Yuen, D. A. & Zhao, W. (1993), 'Instabilities from phase transitions and the timescales of mantle therm al convection', Geophys. Res. Let. 20(12), 1119- 1122.
    • Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. Sz Schubert, G. (1993), 'Effects of an endothermic phase change at 670 km depth in a spherical model of convection in the E arth's mantle', Nature 361, 699­704.
    • Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. Sz Schubert, G. (1994), 'Effects of multiple phase transitions in a three dimensional spherical model of convection in E arth's mantle', J. Geophys. Res. 99, 15877­15901.
    • Tajima, F. Sz Nakagawa, T. (2006), 'Implications of seismic waveforms: Complex physical properties associated with stagnant slab', Geophys. Res. Let. 33. doi: 10.1029/2005GL024314.
    • Tauzin, B., Debayle, E. Sz W ittlinger, G. (2008), 'The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots', J. Geophys. Res. 113, doi:10.1029/2007JB005364.
    • Taylor, B. (2006), 'The single largest oceanic plateau: Hikurangi', Earth Planet. Sci. Lett. 241, 372­380.
    • Thain, D., Tannenbaum, T. Sz Livny, M. (2005), 'Distributed computing in practice: the Condor experience.', Concurrency­pract. Ex. 17, 323­356.
    • Van Keken, P. E., Ballentine, C. J. Sz Porcelli, D. (2001), 'A dynamical investigation of the heat and helium imbalance', Earth Planet. Sci. Lett. 188, 421­434.
    • Vazhkudai, S., Ma, X., Freeh, V., Strickland, J., Tammineedi, N. Sz Scott, S. (2005), FreeLoader: Scavenging desktop storage resources for scientific data, in 'Proceedings of Supercomputing 2005 (SC'05): In t'l Conference on High Performance Computing, Networking and Storage', Seattle, Washington.
    • Wang, I. (2005), P2PS (Peer­to­Peer Simplified), in 'Proceedings of 13th Annual Mardi Gras Conference ­ Frontiers of Grid Applications and Technologies', Louisiana State University, pp. 54­59.
    • Watson, E. B., Thomas, J. B. Sz Cherniak, J. (2007), '40Ar retention in the terrestrial planets', Nature 449, 299­304.
    • Weeraratne, D. Sz Manga, M. (1998), 'Transitions in the style of mantle convection at high Rayleigh numbers', Earth Planet. Sci. Lett. 160, 563­568.
    • Wessel, P. Sz Smith, W. H. F. (1991), 'Free software helps map and display d a ta ', EOS Trans. AGU 72, 441.
    • Wessel, P. Sz Smith, W. H. F. (1998), 'New, improved version of generic mapping tools released', EOS Trans. A G U 79(47), 579.
    • Zhong, S. (2005), 'Dynamics of thermal plumes in three­dimensional isoviscous thermal convection', Geophys. J. Int. 162, 289­300.
    • Zhong, S. J., Zuber, M. T., Moresi, L. & Gurnis, M. (2000), 'Role of temperaturedependent viscosity and surface plates in spherical shell models of mantle convection', J. Geophys. Res. 105, 11063­11082.
    • Zhong, S., Zhang, N., Li, X. L. &; Roberts, J. (2007), 'Supercontinent cycles, true polar wander, and very long­wavelength mantle convection', Earth Planet. Sci. Lett. 261, 551­564.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article