LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Benzyl alcohol was oxidized by an “in situ generated” hydrogen peroxy species, formed from a dilute mixture of hydrogen and oxygen, under mild conditions at a high rate over gold, palladium and gold–palladium nanoparticles supported on hierarchical titanium silicate materials. Hierarchical TS-1 supports were obtained from the crystallization of silanized protozeolitic units, being characterized by having a secondary porous system within supermicro/mesopore range and an enhanced surface area over a standard reference TS-1 material. The presence of the secondary porosity not only improves the accessibility to the active sites of the relatively large reactant molecules but also enhances the metal dispersion, leading to an improved catalytic performance for alcohol oxidation. The catalytic activity of metal loaded hierarchical TS-1 materials was found to be higher in reactions conducted in the presence of diluted hydrogen and oxygen, resulting in a 5-fold increase in the yield of benzaldehyde at 30 °C with an AuPd catalyst with secondary porosity. The improvement in rate observed is due to the oxidizing efficacy of in situ generated hydroperoxy species as compared to molecular oxygen alone as the terminal oxidant.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 M. Taramasso, G. Perego and B. Notari, US Pat., 4410501, 1983.
    • 2 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    • 3 A. Corma, Chem. Rev., 1997, 97, 2373-2419.
    • 4 M. G. Clerici, Met. Oxide Catal., 2009, 2, 705-754.
    • 5 G. T. Kokotailo, S. L. Lawton, D. H. Olson and W. M. Meier, Nature, 1978, 272, 437-438.
    • 6 C. C. Freyhardt, M. Tsapatsis, R. F. Lobo, K. J. Balkus, Jr. and M. E. Davis, Nature, 1996, 381, 295-298.
    • 7 J. Jiang, J. Yu and A. Corma, Angew. Chem., Int. Ed., 2010, 49, 3120-3145.
    • 8 R. Chal, C. Gerardin, M. Bulut and S. van Donk, ChemCatChem, 2011, 3, 67-81.
    • 9 Y. Fang and H. Hu, Catal. Commun., 2007, 8, 817-820.
    • 10 I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson and C. J. H. Jacobsen, Chem. Commun., 2000, 2157-2158.
    • 11 Y. Liu, W. Zhang and T. J. Pinnavaia, Angew. Chem., Int. Ed., 2001, 40, 1255-1258.
    • 12 M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D.-H. Choi and R. Ryoo, Nat. Mater., 2006, 5, 718-723.
    • 13 D. P. Serrano, R. Sanz, P. Pizarro and I. Moreno, Top. Catal., 2010, 53, 1319-1329.
    • 14 D. Serrano, R. Sanz, P. Pizarro and I. Moreno, Chem. Commun., 2009, 1407-1409.
    • 15 U. Romano, A. Esposito, F. Maspero, C. Neri and M. G. Clerici, Stud. Surf. Sci. Catal., 1990, 55, 33-41.
    • 16 A. Corma, P. Esteve, A. Martinez and S. Valencia, J. Catal., 1995, 152, 18-24.
    • 17 M. S. Holm, E. Taarning, K. Egeblad and C. H. Christensen, Catal. Today, 2011, 168, 3-16.
    • 18 F. Maspero and U. Romano, J. Catal., 1994, 146, 476-482.
    • 19 R. A. Sheldon and J. Dakka, Erdoel, Erdgas, Kohle, 1993, 109, 520-522.
    • 20 C. B. Khouw, C. B. Dartt, J. A. Labinger and M. E. Davis, J. Catal., 1994, 149, 195-205.
    • 21 H. Mimoun, in Peroxides (1983), John Wiley & Sons, Ltd., 2010, pp. 463-482.
    • 22 M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin and C. J. Kiely, Nature, 2005, 437, 1132-1135.
    • 23 C. Della Pina, E. Falletta, L. Prati and M. Rossi, Chem. Soc. Rev., 2008, 37, 2077-2095.
    • 24 T. Hayashi, K. Tanaka and M. Haruta, J. Catal., 1998, 178, 566-575.
    • 25 Y. A. Kalvachev, T. Hayashi, S. Tsubota and M. Haruta, J. Catal., 1999, 186, 228-233.
    • 26 B. S. Uphade, T. Akita, T. Nakamura and M. Haruta, J. Catal., 2002, 209, 331-340.
    • 27 C. Qi, T. Akita, M. Okumura, K. Kuraoka and M. Haruta, Appl. Catal., A, 2003, 253, 75-89.
    • 28 N. Yap, R. P. Andres and W. N. Delgass, J. Catal., 2004, 226, 156-170.
    • 29 B. Taylor, J. Lauterbach and W. N. Delgass, Appl. Catal., A, 2005, 291, 188-198.
    • 30 A. K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota and M. Haruta, J. Phys. Chem. B, 2005, 109, 3956-3965.
    • 31 A. Itoh, Y. Kuroda, T. Kitano, Z. Guo, A. Kunai and K. Sasaki, J. Mol. Catal., 1991, 69, 215-222.
    • 32 G. Li, J. Edwards, A. F. Carley and G. J. Hutchings, Catal. Commun., 2007, 8, 247-250.
    • 33 S. Ma, G. Li and X. Wang, Chem. Lett., 2006, 35, 428-429.
    • 34 K. Mori, Y. Miura, S. Shironita and H. Yamashita, Langmuir, 2009, 25, 11180-11187.
    • 35 M. S. Yalfani, S. Contreras, J. Llorca, M. Dominguez, J. E. Sueiras and F. Medina, Phys. Chem. Chem. Phys., 2010, 12, 14673-14676.
    • 36 S. Okada, S. Ikurumi, T. Kamegawa, K. Mori and H. Yamashita, J. Phys. Chem. C, 2012, 116, 14360-14367.
    • 37 P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely and G. J. Hutchings, Chem. Commun., 2002, 2058-2059.
    • 38 P. Landon, P. J. Collier, A. F. Carley, D. Chadwick, A. J. Papworth, A. Burrows, C. J. Kiely and G. J. Hutchings, Phys. Chem. Chem. Phys., 2003, 5, 1917-1923.
    • 39 S. Meenakshisundaram, E. Nowicka, P. J. Miedziak, G. L. Brett, R. L. Jenkins, N. Dimitratos, S. H. Taylor, D. W. Knight, D. Bethell and G. J. Hutchings, Faraday Discuss., 2010, 145, 341-356.
    • 40 M. A. Uguina, D. P. Serrano, G. Ovejero, R. Van Grieken and M. Camacho, Appl. Catal., A, 1995, 124, 391-408.
    • 41 D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodr´ıguez and A´. Peral, Chem. Mater., 2006, 18, 2462-2464.
    • 42 B. Taylor, J. Lauterbach and W. N. Delgass, Catal. Today, 2007, 123, 50-58.
    • 43 G. Li, J. Edwards, A. F. Carley and G. J. Hutchings, Catal. Today, 2007, 122, 361-364.
    • 44 P. Paredes Olivera, E. M. Patrito and H. Sellers, Surf. Sci., 1994, 313, 25-40.
    • 45 D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight, A. F. Carley and G. J. Hutchings, Catal. Today, 2007, 122, 407-411.
    • 46 S. S. Hladyi, M. K. Starchevsky, Y. A. Pazdersky, M. N. Vargaftik and I. I. Moiseev, Mendeleev Commun., 2002, 45-46.
    • 47 M. Sankar, E. Nowicka, R. Tiruvalam, Q. He, S. H. Taylor, C. J. Kiely, D. Bethell, D. W. Knight and G. J. Hutchings, Chem.-Eur. J., 2011, 17, 6524-6532.
    • 48 J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely and G. J. Hutchings, J. Catal., 2005, 236, 69-79.
    • 49 M. Piccinini, E. Ntainjua N, J. K. Edwards, A. F. Carley, J. A. Moulijn and G. J. Hutchings, Phys. Chem. Chem. Phys., 2010, 12, 2488-2492.
    • 50 J. K. Edwards, E. Ntainjua N, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Angew. Chem., Int. Ed., 2009, 48, 8512-8515.
    • 51 J. K. Edwards, B. Solsona, E. Ntainjua N, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Science, 2009, 323, 1037-1041.
    • 52 A. J. H. P. van der Pol and J. H. C. van Hooff, Appl. Catal., A, 1993, 106, 97-113.
    • 53 P. McMorn, G. Roberts and G. Hutchings, Catal. Lett., 1999, 63, 193-197.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article