LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Copernicus Publications
Types: Article
Subjects: Geology, DOAJ:Earth Sciences, QH301-705.5, Science, Ecology, QH540-549.5, Q, Biology (General), QH501-531, sub-02, DOAJ:Earth and Environmental Sciences, Life, DOAJ:Biology and Life Sciences, DOAJ:Biology, QE1-996.5
Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope) and climatic (precipitation, temperature) characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N) of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen saturation in northern forest ecosystems, BioScience, 39, 378-386, doi:10.2307/1311067, 1989.
    • Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., and Baisden, W. T.: Global patterns of the isotopic composition of soil and plant nitrogen, Global Biogeochem. Cy., 17, 1031, doi:10.1029/2002GB001903, 2003.
    • Baisden, W. T., Amundson, R., Brenner, D. L., Cook, A. C., Kendall, C., and Harden, J. W.: A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence, Global Biogeochem. Cy., 16, 1135, doi:10.1029/2001GB001823, 2002a.
    • Baisden, W. T., Amundson, R., Cook, A. C., and Brenner, D. L.: Turnover and storage of C and N in five density fractions from California annual grassland surface soils, Global Biogeochem. Cy., 16, 1117, doi:10.1029/2001GB001822, 2002b.
    • Brenner, D. L., Amundson, R., Baisden, W. T., Kendall, C., and Harden, J.: Soil N and 15N variation with time in a California annual grassland ecosystem, Geochim. Cosmochim. Ac., 65, 4171- 4186, doi:10.1016/S0016-7037(01)00699-8, 2001.
    • Brodie C. R., Heaton, T. H. E., Leng, M. J., Kendrick, C. P., Casford, J. S. L., and Lloyd, J. M.: Evidence for bias in measured δ15N values of terrestrial and aquatic organic materials due to preanalysis acid treatment, Rapid Commun. Mass Sp., 25, 1089- 1099, doi:10.1002/rcm.4970, 2011.
    • Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M., and Jackson, J. K.: Sustained losses of bioavailable nitrogen from montane tropical forests, Nat. Geosci., 5, 123-126, doi:10.1038/ngeo1372, 2012a.
    • Brookshire, E. N. J., Gerber, S., Menge, D. N. L., and Hedin, L. O.: Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation, Ecol. Lett., 15, 9-16, doi:10.1111/j.1461-0248.2011.01701.x, 2012b.
    • Chang, Y. F., Lin, S. T., and Tsai, C. C.: Estimation of soil organic carbon storage in a Cryptomeria plantation forest of northeastern Taiwan, Taiwan J. Forest. Sci., 21, 383-393, 2006.
    • Craine, J. M., Elmore, A. E., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Pen˜uelas, P., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., and Wright, I. J.: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability, New Phytol., 183, 980-992, 2009.
    • Culling, W. E. H.: Analytical theory of erosion, J. Geol., 68, 336- 344, 1960.
    • Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C.: Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648-651, doi:10.1038/nature02150, 2003.
    • Delwiche, C. C. and Steyn, P. L.: Nitrogen isotope fractionation in soils and microbial reactions, Environ. Sci. Technol., 4, 929-935, doi:10.1021/es60046a004, 1970.
    • Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., and Roering, J. J.: Geomorphic transport laws for predicting landscape form and dynamics prediction in geomorphology, in: Prediction in geomorphology, edited by: Wilcock, P. R. and Iverson, R. M., American Geophysical Union, Geoph. Monog. Series, 135, 1-30, doi:10.1029/135GM09, 2003.
    • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., and Wisniewski, J.: Carbon pools and flux of global forest ecosystems, Science, 263, 185-190, doi:10.1126/science.263.5144.185, 1994.
    • Evans, J. R.: Photosynthesis and nitrogen relationships in leaves of C-3 plants, Oecologia, 78, 9-19, doi:10.1007/BF00377192, 1989.
    • Gilbert, G. K.: The convexity of hilltops, J. Geol., 17, 344-350, 1909.
    • Godwin, H.: Half-life of Radiocarbon, Nature, 195, p. 984, doi:10.1038/195984a0, 1962.
    • Handley, L. L. and Raven, J. A.: The use of natural abundance of nitrogen isotopes in plant physiology and ecology, Plant Cell Environ., 15, 965-985, doi:10.1111/j.1365-3040.1992.tb01650.x, 1992.
    • Hatten, J. A., Gon˜i, M. A., and Wheatcroft, R. A.: Chemical characteristics of particulate organic matter from a small mountainous river in the Oregon Coast Range, USA, Biogeochem., 107, 43- 66, doi:10.1007/s10533-010-9529-z, 2012.
    • Hedin, L. O., Armesto, J. J., and Johnson, A. H.: Patterns of nutrient loss from unpolluted, old-growth temperate forests - Evaluation of biogeochemical theory, Ecology, 76, 493-509, doi:10.2307/1941208, 1995.
    • Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., and Barron, A. R.: The nitrogen paradox in tropical forest ecosystems, Annu. Rev. Ecol. Evol. S., 40, 613-635, 2009.
    • Hilton, R. G., Galy, A., Hovius, N., Chen, M. C., Horng, M. J., and Chen, H.: Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains, Nat. Geosci., 1, 759-762, doi:10.1038/ngeo333, 2008a.
    • Hilton, R. G., Galy, A., and Hovius, N.: Riverine particulate organic carbon from an active mountain belt: Importance of landslides, Glob. Biogeochem. Cy., 22, GB1017, doi:10.1029/2006GB002905, 2008b.
    • Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., and Chen, H.: The isotopic composition of particulate organic carbon in mountain rivers of Taiwan, Geochim. Cosmochim. Ac., 74, 3164-3181, doi:10.1016/j.gca.2010.03.004, 2010.
    • Hilton, R. G., Meunier, P., Hovius, N., Bellingham, P., and Galy, A.: Landslide impact on organic carbon cycling in a temperate montane forest, Earth Surf. Processes, 36, 1670-1679, doi:10.1002/esp.2191, 2011a.
    • Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., and Chen, H.: Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism, Geology, 39, 71-74, doi:10.1130/G31352.1, 2011b.
    • Hilton, R. G., Galy, A., Hovius, N., Kao, S. J., Horng, M. J., and Chen, H.: Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest, Global Biogeochem. Cy., 26, GB3014, doi:10.1029/2012GB004314, 2012.
    • Hobbie, E. A. and Ho¨gberg, P.: Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics, New Phytol., 196, 367- 382, 2012.
    • Hobbie, E. A., Macko, S. A., and Shugart, H. H.: Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska, Chem. Geol., 152, 3-11, doi:10.1016/S0009- 2541(98)00092-8, 1999.
    • Ho¨gberg, P. and Johannisson, C.: 15N abundance of forests is correlated with losses of nitrogen, Plant Soil, 157, 147-150, 1993.
    • Houlton, B. Z., Sigman, D. M., and Hedin, L. O.: Isotopic evidence for large gaseous nitrogen losses from tropical rainforests, P. Natl. Acad. Sci. USA, 103, 8745-8750, doi:10.1073/pnas.0510185103, 2006.
    • Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., and Zhu, Z. L.: Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences, Biogeochemistry, 35, 75-139, doi:10.1007/BF02179825, 1996.
    • Huang, J.-C., Lee, T.-Y., Kao, S.-J., Hsu, S.-C., Lin, H.-J., and Peng, T.-R.: Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds, Hydrol. Earth Syst. Sci., 16, 699-714, doi:10.5194/hess-16-699-2012, 2012.
    • Kao, S. J. and Liu, K. K.: Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes, Global Biogeochem. Cy., 14, 189-198, 2000.
    • Kao, S. J., Shiah, F. K., and Owen, J. S.: Export of dissolved inorganic nitrogen in a partially cultivated subtropical mountainous watershed in Taiwan, Water Air Soil Poll., 156, 211-228, 2004.
    • Keller, C. K. and Bacon, D. H.: Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2 and 14CO2, Global Biogeochem. Cy., 12, 361-372, doi:10.1029/98GB00742, 1998.
    • Kendall, C.: Chapter 16: Tracing nitrogen sources and cycling in catchments, in: Isotope Tracers in: Catchment Hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier Science B.V., Amsterdam, 519-576, 1998.
    • Ko¨rner, C., Farquhar, G. D., and Roksandic, Z.: A global survey of carbon isotope discrimination in plants from high-altitude, Oecologia, 74, 623-632, 1988.
    • Larsen, M. C., Torres-Sanchez, A. J., and Concepcion, I. M.: Slopewash, surface runoff and fine litter transport in forest and landslide scars in humid tropical steeplands, Luquillo experimental forest, Puerto Rico, Earth Surf. Processes, 24, 481-502, 1999.
    • Levin, I. and Hesshaimer, V.: Radiocarbon - A unique tracer of global carbon dynamics, Radiocarbon, 42, 69-80, 2000.
    • Lewis, W. M., Hamilton, S. R. and Saunders, J. F.: Rivers of Northern South America, in: Ecosystems of the World: edited by: Rivers, Cushing, C. and Cummins, K., Elsevier, Dordrecht, Netherlands, 219-256, 1995.
    • Lewis, W. M., Melack, J., McDowell, W., McClain, M., and Richey, J.: Nitrogen yields from undisturbed watersheds in the Americas, Biogeochem., 46, 149-162, 1999.
    • Liu, C. P., Yeh, H. W., and Sheu, B. H.: N isotopes and N cycle in a 35-year-old plantation of the Guandaushi subtropical forest ecosystem, central Taiwan, Forest Ecol. Manag., 235, 84-87, doi:10.1016/j.foreco.2006.07.026, 2006.
    • Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem., 41, 1355-1379, doi:10.1016/j.soilbio.2009.02.031, 2009.
    • Mariotti, A.: Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements, Nature, 303, 685-687, 1983.
    • Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S., and Guillemot, J.: The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient, Catena, 7, 293-300, 1980.
    • Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., McDowell, W., Robertson, G. P., Santos, O. C., and Treseder, K.: Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests, Biogeochemistry, 46, 45- 65, doi:10.1007/BF01007573, 1999.
    • Matson, P. A., McDowell, W. H., Townsend, A. R., and Vitousek, P. M.: The globalization of N deposition: ecosystem consequences in tropical environments, Biogeochemistry, 46, 67-83, doi:10.1007/BF01007574, 1999.
    • McClain, M. E. and Naimen, R. J.: Andean Influences on the Biogeochemistry and Ecology of the Amazon River, BioScience, 58, 325-338, 2008.
    • McGroddy, M. E., Baisden, W. T., and Hedin, L. O.: Stoichiometry of hydrological C, N, and P losses across climate and geology: An environmental matrix approach across New Zealand primary forests, Global Biogeochem. Cy., 22, GB1026, doi:10.1029/2007GB003005, 2008.
    • Menge, D. N. L., Pacala, S. W., and Hedin, L. O.: Emergence and maintenance of nutrient limitation over multiple timescales in terrestrial ecosystems, Am. Nat., 173, 164-175, doi:10.1086/595749, 2009.
    • Milliman, J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge University Press, Cambridge, UK, doi:10.1017/CBO9780511781247, 2011.
    • Ohte, N.: Implications of seasonal variation in nitrate export from forested ecosystems: a review from the hydrological perspective of ecosystem dynamics, Ecol. Res., 27, 657-665, doi:10.1007/s11284-012-0956-2, 2012.
    • Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Scha¨fer, K. V. R., McCarthy, H., Hendrey, G., McNulty, S. G., and Katul, G. G.: Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469-472, doi:10.1038/35078064, 2001.
    • Owen, J. S., Wang, M. K., Wang, C. H., King, H. B., and Sun, H. L.: Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan, Forest Ecol. Manag., 176, 519-530, 2003.
    • Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3, 311-314, doi:10.1038/ngeo838, 2010.
    • Robinson, D.: Delta N-15 as an integrator of the nitrogen cycle, Trends Ecol. Evol., 16, 153-162, doi:10.1016/S0169- 5347(00)02098-X, 2001.
    • Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853- 870, 1999.
    • Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Hillslope evolution by nonlinear, slope-dependent transport: Steady-state morphology and equilibrium adjustment timescales, J. Geophys. Res., 106, 16499-16513, doi:10.1029/2001JB000323, 2001.
    • Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X., and Caffee, M.: Erosion rates driven by channel network incision in the Bolivian Andes, Earth Surf. Processes, 30, 1007- 1024, doi:10.1002/esp.1259, 2005.
    • Saunders, T. J., McClain, M. E., and Llerena, C. A.: The biogeochemistry of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-aquatic flowpaths of a montane headwater catchment in the Peruvian Amazon, Hydrol. Process., 20, 2549-2562, doi:10.1002/hyp.6215, 2006.
    • Schlesinger, W. H., Reckhow, K. H., and Bernhardt, E. S.: Global change: The nitrogen cycle and rivers, Water Resour. Res., 42, W03S06, doi:10.1029/2005WR004300, 2006.
    • Shearer, G., Duffy, J., Kohl, K.H., and Commoner, B.: A steadystate model of isotopic fractionation accompanying nitrogen transformations in soil, Soil Sci. Soc. Am. J., 38, 315-322, 1974.
    • Smith, B. N. and Epstein, S.: 2 categories of 13C/12C ratios for higher plants, Plant Physiol., 47, 380-384, 1971.
    • Su, H. J.: Studies on the climate and vegetation types of the natural forests in Taiwan: 1. Analysis of the variation in climatic factors, Q. J. Chin. For., 17, 1-14, 1984.
    • Townsend-Small, A., McClain, M. E., and Brandes, J. A.: Contributions of carbon and nitrogen from the Andes Mountains to the Amazon River: Evidence from an elevational gradient of soils, plants, and river material, Limnol. Oceanogr., 50, 672-685, 2005.
    • Townsend-Small, A., McClain, M. E., Hall, B., Noguera, J. L., Llerena, C. A., and Brandes, J. A.: Suspended sediments and organic matter in mountain headwaters of the Amazon River: Results from a 1-year time series study in the central Peruvian Andes, Geochim. Cosmochim. Ac., 72, 732-740, doi:10.1016/j.gca.2007.11.020, 2008.
    • Trumbore, S. E.: Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements, Global Biogeochem. Cy., 7, 275-290, 1993.
    • Tsai, C. C., Chen, Z. S., Duh, C. T., and Horng, F. W.: Prediction of soil depth using a soil-landscape regression model: A case study on forest soils in southern Taiwan, Proc. Natl. Sci. Counc. ROC(B), 26, 34-39, 2001.
    • Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea - how can it occur, Biogeochemistry, 13, 87-115, 1991.
    • Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., Howarth, R. W., Marino, R., Martinelli, L., Rastetter, E. B., and Sprent, J. I.: Towards an ecological understanding of biological nitrogen fixation, Biogeochemistry, 57, 1-45, 2002.
    • Walker, L. W. and Shiels, A. B.: Post-disturbance erosion impacts carbon fluxes and plant succession on recent tropical landslides, Plant Soil, 313, 205-0216, doi:10.1007/s11104-008- 9692-3, 2008.
    • Weathers, K. C., Simkin, S. M., Lovett, G. M., and Lindberg, S. E.: Empirical modeling of atmospheric deposition in mountainous landscapes, Ecol. Appl., 16, 1590-1607, doi:10.1890/1051- 0761(2006)016[1590:EMOADI]2.0.CO;2, 2006.
    • West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S.H., Chang, C. T., Lin, K. C., Galy, A., Sparkes, R. B., and Hovius, N.: Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm, Limnol. Oceanogr., 56, 77-85, doi:10.4319/lo.2011.56.1.0077, 2011.
    • Yoo, K., Amundson, R., Heimsath, A., and Dietrich, W. E.: Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle, Geoderma, 130, 47-65, 2006.
    • Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601-605, doi:10.1038/NGEO1207, 2011.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.