LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Journal: Applied Soft Computing
Languages: English
Types: Article
Subjects: Software, G400, G600
Many networks exhibit small-world properties. The structure of a small-world network is characterized by short average path lengths and high clustering coefficients. Few graph layout methods capture this structure well which limits their effectiveness and the utility of the visualization itself. Here we present an extension to our novel graphTPP layout method for laying out small-world networks using only their topological properties rather than their node attributes. The Watts-Strogatz model is used to generate a variety of graphs with a small-world network structure. Community detection algorithms are used to generate six different clusterings of the data. These clusterings, the adjacency matrix and edgelist are loaded into graphTPP and, through user interaction combined with linear projections of the adjacency matrix, graphTPP is able to produce a layout which visually separates these clusters. These layouts are compared to the layouts of two force-based techniques. graphTPP is able to clearly separate each of the communities into a spatially distinct area and the edge relationships between the clusters show the strength of their relationship. As a secondary contribution, an edge-grouping algorithm for graphTPP is demonstrated as a means to reduce visual clutter in the layout and reinforce the display of the strength of the relationship between two communities.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article