LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: QE
Recently published multichannel seismic data from the Lomonosov Ridge image a reversed polarity bottom-simulating reflector (BSR) tentatively attributed to the presence of deepwater marine hydrates and recognized throughout a survey area exceeding 100,000 km2. In addition to the importance of these findings for estimating Arctic hydrate reserves, if shown to correspond to the base of the hydrate stability zone, this seismic marker could provide a means for expanding spatial cover of heat flow data in deepwater settings of the Amerasian Basin, where little is known about the tectonic origin and nature of plate boundaries. As an initial test on the validity of this assumption, we develop a petrophysical model using sediments collected from circumpolar regions of the Lomonosov Ridge to derive an estimate of surface heat flow patterns from the BSR. The results show that the BSR inferred geothermal gradient and surface heat flow are exceedingly high when compared to published regional measurements. Although potential errors in the analysis may explain some of this discrepancy, the observation that the BSR remains at a constant subbottom depth despite large variations in water depths (>2400 m) and relative sedimentation rates provides additional evidence that it cannot mark the base of the hydrate stability zone. A further understanding of its origin requires a more detailed investigation of the existing seismic data and highlights the need for renewed collection of heat flow data from the Arctic Ocean.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alvey, A., C. Gaina, N. J. Kusznir, and T. H. Torsvik (2008), Integrated crustal thickness mapping and plate reconstructions for the high Arctic, Earth Planet. Sci. Lett., 274, 310-321, doi:10.1016/j.epsl.2008.07.036.
    • Backman, J., et al. (2008), Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the LR, Paleoceanography, 23, PA1S03, doi:10.1029/2007PA001476.
    • Backman, J., K. Moran, D. B. McInroy, and L. A. Mayer (2006), Arctic Coring Expedition (ACEX), Proc. Integr. Ocean Drill. Program, 302, doi:10.2204/iodp.proc.302.2006.
    • Borowski, W. S., C. K. Paull, and W. Ussler (1999), Global and local variations of interstitial sulfate gradients in deep‐water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Mar. Geol., 159, 131-154, doi:10.1016/S0025-3227(99)00004-3.
    • Brozena, J. M., V. A. Childers, L. Lawver, L. M. Gahagan, R. Forsberg, J. I. Faleide, and O. Eldholm (2003), New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for Basin development, Geology, 31, 825-828, doi:10.1130/G19528.1.
    • Bullard, E. C. (1939), Heat Flow in South Africa, Proc. R. Soc. London, Ser. A, 173, 474-502, doi:10.1098/rspa.1939.0159.
    • Cochran, J. R., M. H. Edwards, and B. J. Coakley (2006), Morphology and structure of the Lomonosov Ridge, Arctic Ocean, Geochem. Geophys. Geosyst., 7(5), Q05019, doi:10.1029/2005GC001114.
    • Dickens, G. R., and M. S. Quinby‐Hunt (1994), Methane hydrate stability in seawater, Geophys. Res. Lett., 21, 2115-2118, doi:10.1029/94GL01858.
    • Drachev, S. S., N. Kaul, and V. N. Beliaev (2003), Eurasia spreading basin to Laptev Shelf transition: Structural pattern and heat flow, Geophys. J. Int., 152(3), 688-698, doi:10.1046/j.1365-246X.2003.01882.x.
    • Futterer, D. (Ed.) (1992), ARCTIC'91: The expedition ARK VIII/3 of Rv Polarstern in 1991, Ber. Polarforsch., 107, 1-267.
    • Ganguly, N., G. D. Spence, N. R. Chapman, and R. D. Hyndman (2000), Heat flow variations from bottom simulating reflectors on the Cascadia margin, Mar. Geol., 164, 53-68, doi:10.1016/S0025-3227(99)00126-7.
    • Glebovsky, V. Y., V. D. Kaminsky, A. N. Minakov, S. A. Merkur'ev, V. A. Childers, and J. M. Brozena (2006), Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field, Geotectonics, Engl. Transl., 40(4), 263-281, doi:10.1134/S0016852106040029.
    • Grantz, A., S. D. May, P. T. Taylor, and L. A. Lawver (1990), Canada Basin, in The Arctic Region, edited by A. Grantz, G. L. Johnson, and W. J. Sweeney, pp. 379-402, Geol. Soc. Am., Boulder.
    • Grevemeyer, I., and H. Villinger (2001), Gas hydrate stability and the assessment of heat flow through continental margins, Geophys. J. Int., 145, 647-660, doi:10.1046/j.0956-540x.2001.01404.x.
    • Grevemeyer, I., et al. (2003), Heat flow over the descending Nazca plate in central Chile, 32°S to 41°S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates, Earth Planet. Sci. Lett., 213(3-4), 285-298, doi:10.1016/S0012-821X(03)00303-0.
    • He, T., G. D. Spence, M. Riedel, R. D. Hyndman, and N. R. Chapman (2007), Fluid flow and origin of carbonate mound offshore Vancouver Island: Seismic and heat flow constraints, Mar. Geol., 239, 83-89, doi:10.1016/j.margeo.2007.01.002.
    • Holbrook, W. S., et al. (1996), Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, 1840-1843, doi:10.1126/science.273.5283.1840.
    • Holtz, R. D., and W. D. Kovacs (1981), An Introduction to Geotechnical Engineering, Prentice‐Hall, Englewood Cliffs, N. J.
    • Hyndman, R. D., and G. D. Spence (1992), A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophys. Res., 97, 6683-6698, doi:10.1029/92JB00234.
    • Jakobsson, M., et al. (2006), Expedition 302 geophysics: Integrating past data with new results in Arctic Coring Expedition (ACEX), Proc. Integr. Ocean Drill. Program, 302, 1-21, doi:10.2204/iodp.proc.302.102.2006.
    • Jakobsson, M., et al. (2007), The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean, Nature, 447, 986-990, doi:10.1038/ nature05924.
    • Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. W. Schenke, and P. Johnson (2008), An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophys. Res. Lett., 35, L07602, doi:10.1029/2008GL033520.
    • Jessop, A. M. (1990), Thermal Geophysics, 306 pp., Elsevier, Amsterdam.
    • Jokat, W. (1999), Arctic'98: The Expedition ARK‐XIVI 1a of Rv Polarstern in 1998, Ber. Polarforsch., 308, 159 pp.
    • Jokat, W. (2005), The sedimentary structure of the LR between 88°N and 80°N, Geophys. J. Int., 163, 698-726, doi:10.1111/j.1365-246X. 2005.02786.x.
    • Jokat, W., Y. Kristoffersen, and T. M. Rasmussen (1992), LR-A double sided continental margin, Geology, 20, 887-890, doi:10.1130/0091- 7613(1992)020<0887:LRADSC>2.3.CO;2.
    • Jokat, W., E. Weigelt, Y. Kristoffersen, T. M. Rasmussen, and T. Schöne (1995), New insights into the evolution of the LR and the Eurasian Basin, Geophys. J. Int., 122, 378-392.
    • Kaul, N., A. Rosenberger, and H. Villinger (2000), Comparison of measured and BSR‐derived heat flow values, Makran accretionary prism, Pakistan, Mar. Geol., 164, 37-51, doi:10.1016/S0025-3227(99)00125-5.
    • Kristoffersen, Y., V. Buravtsev, W. Jokat, and V. Poselov (1997), Seismic reflection surveys during Arctic Ocean‐96, Cruise report, in Polarforskningssekretaariatets arsbok 1995/96, edited by E. Grönlund, pp. 75-77, Polarforskningssekretariatet, Stockholm.
    • Krylov, A. A., I. A. Andreeva, C. Vogt, J. Backman, V. V. Krupskaya, G. E. Grikurov, K. Moran, and H. Shoji (2008), A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean, Paleoceanography, 23, PA1S06, doi:10.1029/ 2007PA001497.
    • Kuzmichev, A. (2009), Where does the South Anyui suture go in the New Siberian islands and Laptev Sea?: Implications for the Amerasia Basin origin, Tectonophysics, 463, 86-108, doi:10.1016/j.tecto.2008.09.017.
    • Kvenvolden, K. A. (1993), A primer on gas hydrates, in The Future of Energy Gases, edited by D. G. Howel, U.S. Geol. Surv. Prof. Pap., 1570, 279- 291.
    • Kvenvolden, K. A., and A. Grantz (1990), Gas hydrates of the Arctic Ocean region, in The Arctic Ocean Region. The Geology of North America, edited by A. Grantz, L. Johnson, and J. F. Sweeney, pp. 539-549, Geol. Soc. Am., Boulder, Colo.
    • Lachenbruch, A. (1968), Rapid estimation of the topographic disturbance to superficial thermal gradients, Rev. Geophys., 6(3), 365-400, doi:10.1029/ RG006i003p00365.
    • Langseth, M. G., A. H. Lachenbruch, and B. V. Marshall (1990), Geothermal Observations in the Arctic Region, in The Geology of North America, vol. L, The Arctic Ocean Region, edited by A. Grantz, G. L. Johnson, and J. F. Sweeney, pp. 133-151, Geol. Soc. Am., Boulder, Colo.
    • Lebedeva‐Ivanova, N. N., Y. Y. Zamansky, A. E. Langinen, and M. Y. Sorokin (2006), Seismic profiling across the Mendeleev Ridge at 82 N: Evidence of continental crust, Geophys. J. Int., 165, 527-544, doi:10.1111/j.1365-246X.2006.02859.x.
    • Lubimova, E. A. (1969), Terrestrial heat flow for the USSR and its connection with other Geophenomena, Bull. Volcanol., 33(1), 341-367, doi:10.1007/BF02596728.
    • Lubimova, E. A., G. A. Tomara, R. M. Demenitskaya, and A. M. Karasik (1969), Measurement of heat flow across the Arctic Ocean floor in the vicinity of the median hackel ridge, Dokl. Akad. Nauk SSSR, 186, 1318-1321.
    • Lubimova, E. A., B. G. Polyak, Y. B. Smirnov, R. I. Kutas, F. V. Firsov, S. I. Sergienko, and L. N. Luisova (1973), Heat flow on the USSR Territory: catalogue of data, Geophys. Comm. Acad. Sci. USSR, Moscow.
    • Melnikov, V., and A. Nesterov (1996), Modelling of gas hydrates formation in porous media, in Proceedings of the Second International Conference on Natural Gas Hydrates, edited by J. P. Monfort, pp. 541-548, Tapir Acad., Trondheim, Norway.
    • Moran, K., et al. (2006), The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601-605, doi:10.1038/nature04800.
    • Nouze, H., and A. Baltzer (2003), Shallow bottom‐simulating reflectors on the Angola margin, in relation with gas and gas hydrate in the sediments, in Subsurface Sediment Mobilization, edited by P. Van Rensbergen et al., Geol. Soc. Spec. Publ., 216, 191-206.
    • O'Regan, M. (2008), Data report: High‐resolution bulk density, dry density, and porosity records from the Arctic Coring Expedition, IODP Expedition 302, in Arctic Coring Expedition (ACEX), Proc. Integr. Ocean Drill. Program, 302, doi:10.2204/iodp.proc.302.201.2008.
    • O'Regan, M., et al. (2008), Mid‐Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean, Paleoceanography, 23, PA1S20, doi:10.1029/2007PA001559.
    • O'Regan, M., K. Moran, C. P. Baxter, J. Cartwright, C. Vogt, and M. Koelling (2010), Towards ground truthing exploration in the central Arctic Ocean: A Cenozoic compaction history from the Lomonosov Ridge, Basin Res., 22, 215-235, doi:10.1111/j.1365-2117.2009.00403.x.
    • Pollack, H. N., S. J. Hurter, and J. R. Johnson (1993), Heat flow from the Earth's interior: Analysis of the global data set, Rev. Geophys., 31, 267-280, doi:10.1029/93RG01249.
    • Posewang, J., and J. Mienert (1999), The enigma of double BSRs: Indicators for changes in the hydrate stability field, Geo Mar. Lett., 19, 157-163, doi:10.1007/s003670050103.
    • Ruppel, C. (1997), Anomalously cold temperatures observed at the base of gas hydrate stability zone on the US passive continental margin, Geology, 25(8), 699-704, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3. CO;2.
    • Sangiorgi, F., H.‐J. Brumsack, D. A. Willard, S. Schouten, C. Stickley, M. O'Regan, G.‐J. Reichart, J. S. Sinninghe Damsté, and H. Brinkhuis (2008), A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues, Paleoceanography, 23, PA1S04, doi:10.1029/2007PA001477.
    • Shipley, T. H., M. K. Houston, R. T. Buffler, F. J. Shaub, K. J. McMillan, J. W. Ladd, and J. L. Worzel (1979), Seismic reflection evidence for the widespread occurrence of possible gas hydrate horizons on continental slopes and rises, AAPG Bull., 63, 2201-2213.
    • Sloan, E. D. (1998), Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, New York.
    • Sorokin, M. Y., Y. Y. Zamansky, A. E. Langinen, H. R. Jackson, and R. Macnab (1999), Crustal structure of the Makarov Basin, Arctic Ocean determined by seismic refraction, Earth Planet. Sci. Lett., 168, 187-199, doi:10.1016/S0012-821X(99)00049-7.
    • St. John, K. (2008), Cenozoic ice‐rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge, Paleoceanography, 23, PA1S05, doi:10.1029/2007PA001483.
    • Stein, R., R. Usbeck, and K. Polozek (1999), Continous whole‐core logging of wet bulk density, P wave velocity and magnetic susceptibility, in ARCTIC 98: The Expedition ARK‐XIV/1a of RV Polarstern in 1998, edited by W. Jokat, Ber. Polarforsch., 308, 49-57, doi:10013/ epic.10311.d001.
    • Sweeney, J. F., J. R. Weber, and S. M. Blasco (1982), Continental ridges in the Arctic Ocean: LOREX constraints, Tectonophysics, 89, 217-237, doi:10.1016/0040-1951(82)90039-7.
    • Taylor, P. T., L. C. Kovacs, P. R. Vogt, and G. L. Johnson (1981), Detailed aeromagnetic investigation of the Arctic Basin, 2, J. Geophys. Res., 86, 6323-6333.
    • Trehu, A. M., C. Ruppel, M. Holland, G. R. Dickens, M. E. Torres, T. S. Collett, D. Goldberg, M. Riedel, and P. Schultheiss (2006), Gas hydrates in marine sediments, lessons from scientific ocean drilling, Oceanography, 19(4), 124-142.
    • Vanneste, M., S. Guidard, and J. Mienert (2005), Bottom‐simulating reflections and geothermal gradients across the western Svalbard margin, Terra Nova, 17, 510-516, doi:10.1111/j.1365-3121.2005.00643.x.
    • Vogt, P. R., P. T. Taylor, L. C. Kovacs, and G. L. Johnson (1979), Detailed Aeromagnetic investigation of the Arctic Basin, J. Geophys. Res., 84, 1071-1089, doi:10.1029/JB084iB03p01071.
    • Weaver, J. S., and J. M. Stewart (1982), In situ hydrates under the Beaufort Sea shelf, in Proceedings, Fourth Canadian Permafrost Conference, edited by H. M. French, pp. 312- 319, Natl. Res. Counc. of Can., Ottawa, Ont.
    • Weber, J. R., and J. F. Sweeney (1990), Ridges and Basins in the Central Arctic Ocean, in The Geology of North America, vol. L, The Arctic Ocean Region, edited by A. Grantz, G. L. Johnson, and J. F. Sweeney, pp. 305-36, Geol. Soc. Am., Boulder, Colo.
    • Wood, W. T., and C. Ruppel (2000), Seismic and thermal investigations of the Blake Ridge gas hydrate area: A synthesis, Proc. Ocean Drill. Program Sci. Results, 164, 253-264.
    • Xu, W., and C. Ruppel (1999), Predicting the occurrence, distribution and evolution of methane gas hydrate in porous marine sediments, J. Geophys. Res., 104, 5081-5095, doi:10.1029/1998JB900092.
    • Yamano, M., S. Uyeda, Y. Aoki, and T. H. Shipley (1982), Estimates of heat flow derived from gas hydrates, Geology, 10, 339-342, doi:10.1130/0091- 7613(1982)10<339:EOHFDF>2.0.CO;2.
    • K. Moran and M. O'Regan, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article