LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Institute of Physics
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Optics
Optical rigidity will play an important role in future generations of gravitational wave (GW) interferometers which employ high laser power in order to reach and exceed the standard quantum limit. Several experiments have demonstrated the optical spring effect for very low weight mirror masses. In this paper we extend this to a mass and frequency regime more directly applicable to GW detectors. Using a end mirror mass we demonstrate an optical spring resonant at and a stiffness of 9.4 ×105 N m−1. The to mass regime may also be useful for the application as a readout mirror for optical bar or optical lever configurations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Abbott B P et al 2009 Rep. Prog. Phys. 72 076901
    • [2] Accadia T et al 2011 Class. Quantum Grav. 28 114002
    • [3] Luck H et al 2006 Class. Quantum Grav. 23 S71-8
    • [4] Takahashi R and (the TAMA Collaboration) 2004 Class. Quantum Grav. 21 S403-408
    • [5] Abadie J et al 2015 Class. Quantum Grav. 32 074001
    • [6] Willke B et al 2006 Class. Quantum Grav. 23 S207-14
    • [7] Aso Y et al 2013 Phys. Rev. D 88 043007
    • [8] Acernese F et al 2015 Class. Quantum Grav. 32 024001
    • [9] Corbitt T, Ottaway D, Innerhofer E, Pelc J and Mavalvala N 2006 Phys. Rev. A 74 021802
    • [10] Braginsky V B and Khalilli F Y 1992 Quantum Measurements (Cambridge: Cambridge University Press)
    • [11] Meers B J 1988 Phys. Rev. D 38 2317-26
    • [12] Buonanno A and Chen Y 2002 Phys. Rev. D 65 042001
    • [13] Miyakawa O et al 2006 Phys. Rev. D 74 022001
    • [14] Braginsky V B and Khalily F Y 1996 Phys. Lett. A 218 167-74
    • [15] Khalili F Y 2002 Phys. Lett. A 298 308-14
    • [16] Rehbein H et al 2008 Phys. Rev. D 78 062003
    • [17] LIGO Scientific Collaboration 2011 Instrument Science White Paper https://dcc.ligo.org/cgibin/private/DocDB/ShowDocument?docid = 62186
    • [18] Mueller-Ebhard H et al 2009 Review of quantum non-demolition schemes for the Einstein telescope available at https://tds.ego-gw.it/itf/tds/file.php?callFile = ET-010-09.pdf
    • [19] Punturo M et al 2010 Class. Quantum Grav. 27 084007
    • [20] Hild S et al 2011 Sensitivity studies for third-generation gravitational wave observatories 28 094013
    • [21] Corbitt T et al 2007 Phys. Rev. Lett. 98 150802
    • [22] Sheard B S et al 2004 Phys. Rev. A 69 051801
    • [23] Kippenberg T J et al 2005 Phys. Rev. Lett. 95 033901
    • [24] Torrie C 2001 PhD Thesis University of Glasgow, Glasgow, Scotland, UK
    • [25] Huttner S H et al 2008 Class. Quantum Grav. 25 235003
    • [26] Sato S et al 2000 Appl. Opt. 39 4616
    • [27] Braginsky V B and Vyatchanin S P 2008 Phys. Lett. A 293 228
    • [28] Sidles J A and Sigg D 2006 Phys. Lett. A 354 167
    • [29] Savvides N and Bell T J 1993 Thin Solid Films 228 289-92
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article