LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: RSC Publishing
Languages: English
Types: Article
Subjects:
BaTiO3 containing Ca substituted for Ti as an acceptor dopant, with oxygen vacancies for charge compensation\ud and processed in air, is a p-type semiconductor. The hole conductivity is attributed to uptake of a small\ud amount of oxygen which ionises by means of electron transfer from lattice oxide ions, generating O�\ud ions as the source of p-type semiconductivity. Samples heated in high pressure O2, up to 80 atm, absorb\ud up to twice the amount expected from the oxygen vacancy concentration. This is attributed to\ud incorporation of superoxide, O2\ud �, ions in oxygen vacancies associated with the Ca2+ dopant and is\ud supported by Raman spectroscopy results.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 S. A. Long and R. N. Blumenthal, Ti-rich nonstoichiometric BaTiO3: I, high-temperature electrical conductivity measurements, J. Am. Ceram. Soc., 1971, 54(10), 515-519.
    • 2 S. A. Long and R. N. Blumenthal, Ti-rich nonstoichiometric BaTiO3: II, analysis of defect structure, J. Am. Ceram. Soc., 1971, 54(11), 577-583.
    • 3 R. J. Panlener and R. N. Blumenthal, Ti-rich nonstoichiometric BaTiO3: III, high-temperature thermodynamic and X-ray diffraction measurements, J. Am. Ceram. Soc., 1971, 54(12), 610-613.
    • 4 G. J. Conger and H. U. Anderson, Nonstoichiometry in BaTiO3, J. Am. Ceram. Soc., 1972, 55(10), 539.
    • 5 N. G. Eror and D. M. Smyth, Nonstoichiometric disorder in single-crystalline BaTiO3 at elevated temperatures, J. Solid State Chem., 1978, 24(3-4), 235-244.
    • 6 N.-H. Chan and D. M. Smyth, Defect chemistry of BaTiO3, J. Electrochem. Soc., 1976, 123(10), 1584-1585.
    • 7 N. H. Chan, R. K. Sharma and D. M. Smyth, Nonstoichiometry in undoped BaTiO3, J. Am. Ceram. Soc., 1981, 64(9), 556-562.
    • 8 J. Nowotny and M. Rekas, Electrical properties and defect structure of barium metatitanate within the p-type regime, J. Eur. Ceram. Soc., 1989, 5(3), 173-182.
    • 9 J. Nowotny and M. Rekas, Defect chemistry of BaTiO3, Solid State Ionics, 1991, 49, 135-154.
    • 10 H.-I. Yoo, C.-R. Song and D.-K. Lee, BaTiO3-d: defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry, J. Electroceram., 2002, 8, 5-36.
    • 11 N.-H. Chan and D. M. Smyth, Defect chemistry of donordoped BaTiO3, J. Am. Ceram. Soc., 1984, 67(4), 285-288.
    • 12 N.-H. Chan, R. K. Sharma and D. M. Smyth, Nonstoichiometry in acceptor-doped BaTiO3, J. Am. Ceram. Soc., 1982, 65(3), 167-170.
    • 13 P. Ren, N. Maso´, Y. Liu, L. Ma, H. Fan and A. R. West, Mixed oxide ion and proton conduction and p-type semiconduction in BaTi0.98Ca0.02O2.98 ceramics, J. Mater. Chem. C, 2013, 1(13), 2426-2432.
    • 14 M. Prades, N. Maso´, H. Beltr´an, E. Cordoncillo and A. R. West, Field enhanced bulk conductivity of BaTiO3:Mg ceramics, J. Mater. Chem., 2010, 20(25), 5335-5344.
    • 15 H. Beltr´an, M. Prades, N. Maso´, E. Cordoncillo and A. R. West, Voltage-dependent low-field bulk resistivity of BaTiO3:Zn ceramics, J. Am. Ceram. Soc., 2010, 93(2), 500-505.
    • 16 N. Mas´o, M. Prades, H. Beltr´an, E. Cordoncillo, D. C. Sinclair and A. R. West, Field enhanced bulk conductivity of acceptor doped BaTi1 xCaxO3 x ceramics, Appl. Phys. Lett., 2010, 97(6), 062907.
    • 17 H. Beltr´an, M. Prades, N. Maso´, E. Cordoncillo and A. R. West, Enhanced conductivity and non-linear voltage-current characteristics of non-stoichiometric BaTiO3 ceramics, J. Am. Ceram. Soc., 2011, 94(9), 2951-2962.
    • 18 Q.-L. Zhang, N. Mas´o, Y. Liu, H. Yang and A. R. West, Voltagedependent low-field resistivity of CaTiO3:Zn ceramics, J. Mater. Chem., 2011, 21(34), 12894-12900.
    • 19 Y. H. Han, J. B. Appleby and D. M. Smyth, Calcium as an acceptor impurity in BaTiO3, J. Am. Ceram. Soc., 1987, 70(2), 96-100.
    • 20 Z. Q. Zhuang, M. P. Harmer and D. M. Smyth, The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3, Mater. Res. Bull., 1987, 22(10), 1329-1335.
    • 21 L. Zhang, O. P. Thakur, A. Feteira, G. M. Keith, A. G. Mould, D. C. Sinclair and A. R. West, Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics, Appl. Phys. Lett., 2007, 90, 142914.
    • 22 T. Mitsui and W. B. Westphal, Dielectric and X-ray studies of CaxBa1 xTiO3 and CaxSr1 xTiO3, Phys. Rev., 1961, 124(5), 1354-1359.
    • 23 J. Pokorn´y, U. M. Pasha, L. Ben, O. P. Thakur, D. C. Sinclair and I. M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3, J. Appl. Phys., 2011, 109(11), 114110.
    • 24 F. J. Blunt, P. J. Hendra and J. R. Mackenzie, The laser Raman spectra of salts containing the anions O2 and O22 , J. Chem. Soc., Chem. Commun., 1969, 6, 278-279.
    • 25 S. A. Hunter-Saphir and J. A. Creighton, Resonance Raman scattering from the superoxide ion, J. Raman Spectrosc., 1998, 29(5), 417-419.
    • 26 J. Yang, D. Zhai, H.-H. Wang, K. C. Lau, J. A. Schlueter, P. Du, D. J. Myers, Y.-K. Sun, L. A. Curtiss and K. Amine, Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery, Phys. Chem. Chem. Phys., 2013, 15(11), 3764-3771.
    • 27 K. C. Lau and L. A. Curtiss, Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure, J. Phys. Chem. C, 2011, 115(47), 23625-23633.
    • 28 M. Strongin, S. L. Qiu, J. Chen, C. L. Lin and E. M. McCarron, Question of superoxide in La2CuO4+d, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, 41(10), 7238-7240.
    • 29 H. Beltr´an, E. Cordoncillo, P. Escribano, D. C. Sinclair and A. R. West, Oxygen loss, semiconductivity, and positive temperature coefficient of resistance behavior in undoped cation-stoichiometric BaTiO3 ceramics, J. Appl. Phys., 2005, 98(9), 094102.
    • 30 C.-Y. Yoo, B. A. Boukamp and H. J. M. Bouwmeester, Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide, J. Solid State Electrochem., 2011, 15(2), 231-236.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article