LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: QA, QA165, QA150

Classified by OpenAIRE into

arxiv: Mathematics::Algebraic Geometry, Quantitative Biology::Cell Behavior, Mathematics::Representation Theory
We consider quantum Schubert cells in the quantum grassmannian and give a cell decomposition of the prime spectrum via the Schubert cells. As a consequence, we show that all primes are completely prime in the generic case where the deformation parameter q is not a root of unity. There is a natural torus action of H = (k*)(n) on the quantum grassmannian O-q(G(m,n)(k)) and the cell decomposition of the set of H-primes leads to a parameterisation of the H-spectrum via certain diagrams on partitions associated to the Schubert cells. Interestingly, the same parameterisation occurs for the nonnegative cells in recent studies concerning the totally nonnegative grassmannian. Finally, we use the cell decomposition to establish that the quantum grassmannian satisfies normal separation and catenarity.

Share - Bookmark

Download from

Cite this article