Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Wiley
Languages: English
Types: Article
Gallium (Ga) helps solubilize rare-earth ions in chalcogenide glasses, but has been found to form the dominant crystallizing selenide phase in bulk glass in our previous work. Here, the crystallization behavior is compared of as-annealed 0–3000 ppmw Dy3+-doped Ge–As–Ga–Se glasses with different Ga levels: Ge16.5As(19−x)GaxSe64.5 (at.%), for x = 3 and 10, named Ga3 and Ga10 glass series, respectively. X-ray diffraction and high-resolution transmission electron microscopy are employed to examine crystals in the bulk of the as-prepared glasses, and the crystalline phase is proved to be the same: Ge-modified, face centered cubic α-Ga2Se3. Light scattering of polished glass samples is monitored using Fourier transform spectroscopy. When Ga is decreased from 10 to 3 at.%, the bulk crystallization is dramatically reduced and the optical scattering loss decreases. Surface defects, with a rough topology observed for both series of as-prepared chalcogenide glasses, are demonstrated to comprise Dy, Si, and [O]. For the first time, evidence for the proposed nucleation agent Dy2O3 is found inside the bulk of as-prepared glass. This is an important result because rare-earth ions bound in a high phonon–energy oxide local environment are, as a consequence, inactive mid-infrared fluorophores because they undergo preferential nonradiative decay of excited states.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE Quant. Electron., 37 [9] 1127-37 (2001).
    • 2B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-Earth Doped Selenide Glasses and Fibers for Active Applications in the Near and Mid-IR,” J. Non-Cryst. Solids, 256-257, 253-9 (1999).
    • 3M. Pollnau and S. Jackson, “Mid-Infrared Fiber Lasers”; pp. 225-61 in Solid-State Mid-Infrared Laser Sources, Vol. 89, Edited by I. Sorokina and K. Vodopyanov. Springer Verlag Berlin, 2003.
    • 4A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in Rare-Earth-Doped Mid-Infrared Fiber Lasers,” Opt. Express, 18 [25] 26704-19 (2010).
    • 5M. Ebrahim-Zadeh, and I. Sorokina, Mid-Infrared Coherent Sources and Applications. Springer, the Netherlands, 2005.
    • 6J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide GlassFiber-Based Mid-IR Sources and Applications,” Quant. Electron., 15 [1] 114-9 (2009).
    • 7X. Zhu and N. Peyghambarian, “High-Power Zblan Glass Fiber Lasers: Review and Prospect,” Adv. Optoelectron, 2010, 1-23 (2010).
    • 8F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-Doped Chalcogenide Glass Laser for Mid-IR Application,” J. Non-Cryst. Solids, 355 [18-21] 1145-8 (2009).
    • 9F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical Study of Cascade Laser in Erbium-Doped Chalcogenide Glass Fibers,” Opt. Mater., 33 [2] 241-5 (2010).
    • 10R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of Cascade Lasing in Dy3+ Chalcogenide Glass Fiber Laser with Efficient Output at 4.5 Microns,” Photon. Technol. Lett., 20 [2] 123-5 (2008).
    • 11S. Sujecki, L. Sojka, E. Beres-Pawlik, Z. Tang, D. Furniss, A. Seddon, and T. Benson, “Modelling of a Simple Dy3+ Doped Chalcogenide Glass Fibre Laser for Mid-Infrared Light Generation,” Opt. Quant. Electron., 42 [2] 69-79 (2010).
    • 12N. P. Barnes and R. E. Allen, “Room Temperature Dy:YLF Laser Operation at 4.34 lm,” IEEE J. Quant. Electron., 27 [2] 277-82 (1991).
    • 13M. C. Nostrand, R. H. Page, S. A. Payne, and W. F. Krupke, “RoomTemperature Laser Action at 4.3-4.4 lm in GaGa2S4:Dy3+,” Opt. Lett., 24 [17] 1215-7 (1999).
    • 14P. Nemec and M. Frumar, “Compositional Dependence of Spectroscopic Parameters of Dy3+ Ions in Ge-Ga-Se Glasses,” Mater. Lett., 62 [17-18] 2799-801 (2008).
    • 15Z. Tang, D. Furniss, M. Fay, N. C. Neate, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation and Optical Loss Studies of Dy3+-Doped, Low Ga Content, Selenide Chalcogenide Bulk Glasses and Optical Fibers”; pp. 193-9 in Processing, Properties, and Applications of Glass and Optical Materials: Ceramic Transactions, Vol. 231. Edited by A. K. Varshneya, H. A. Schaeffer, K. A. Richardson, M. Wightman and L. D. Pye. John Wiley & Sons, Inc., Hoboken, NJ, 2012
    • 16Z. Tang, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “The Effect of the Nature of the Rare Earth Additive on Chalcogenide Glass Stability”; pp. 79121F in Proceedings of the SPIE, Solid State Lasers XX: Technology and Devices., Vol. 7912, Edited by W. A. Clarkson, N. Hodgson and R. Shori. SPIE, Bellingham, WA, 2011
    • 17Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The Influence of Dysprosium Addition on the Crystallization Behavior of a Chalcogenide Selenide Glass Close to the Fiber Drawing Temperature,” J. Am. Ceram. Soc., 95 [12] 3834-41 (2012).
    • 18P. Nemec, M. Frumar, B. Frumarova, M. Jelı́nek, J. Lancok, and J. Jedelsky, “Pulsed Laser Deposition of Pure and Praseodymium-Doped Ge-Ga-Se Amorphous Chalcogenide Films,” Opt. Mater., 15 [3] 191-7 (2000).
    • 19S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and Photoluminescence Properties of Erbium-Doped Chalcogenide Glasses (Gegas: Er),” Quant. Electron., 14 [5] 1353-60 (2008).
    • 20M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide Glasses Doped with Tb, Dy and Pr Ions,” J. Non-Cryst. Solids, 326-327, 301-5 (2003).
    • 21M. S. Iovu, N. N. Syrbu, Y. S. Tveryanovich, and G. J. Adriaenssens, “Photoluminescence of Ga0.016Ge0.25As0.083S0.65 Glasses Doped with RareEarth Ions,” J. Optoelectron. Adv. M, 8 [4] 1341-4 (2006).
    • 22V. Lyubin, M. Klebanov, B. Sfez, M. Veinger, R. Dror, and I. Lyubina, “Photoluminescence, Photostructural Transformations and Photoinduced Anisotropy in Rare-Earth-Doped Chalcogenide Glassy Films,” J. Non-Cryst. Solids, 352 [9-20] 1599-601 (2006).
    • 23Y. Choi and J. Song, “Spectroscopic Properties of Tm3+ Ions in Chalcogenide Ge-As-S Glass Containing Minute Amount of Ga and CsBr,” Opt. Commun., 281 [17] 4358-62 (2008).
    • 24T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared Emission From Holmium Doped Gallium Lanthanum Sulphide Glass,” Infrared Phys. Technol., 40 [4] 329-35 (1999).
    • 25L. B. Shaw, B. Cole, D. T. Schaafsma, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “Rare-Earth-Doped Selenide Glass Optical Sources”; pp. 420-1 in Proceedings of Lasers and Electro-Optics. Cleo 98, Technical Digest, Optical Society of America, Washington, DC, 1998.
    • 26L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of Mid-Infrared Laser Action in Chalcogenide Rare Earth Doped Glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express, 2, 1580-7 (2012).
    • 27Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization Behavior of Dy3+-Doped Selenide Glasses,” J. NonCryst. Solids, 357 [11-13] 2453-62 (2011).
    • 28B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of Rare Earths in GeAs Sulfide Glass,” C. R. Chim., 5 [12] 865-72 (2002).
    • 29J. K. Kim, B. K. Jin, W. J. Chung, B. J. Park, J. Heo, and Y. G. Choi, “Influence of the Ga Addition on Optical Properties of Pr in Ge-Sb-Se Glasses,” J. Phys. Chem. Solids, 72 [11] 1386-9 (2011).
    • 30T. H. Lee, S. I. Simdyankin, J. Hegedus, J. Heo, and S. R. Elliott, “Spatial Distribution of Rare-Earth Ions and GaS4 Tetrahedra in Chalcogenide Glasses Studied Via Laser Spectroscopy and Ab Initio Molecular Dynamics Simulation,” Phys. Rev. B, 81 [10] 1042041-6 (2010).
    • 31T. Lee, S. Simdyankin, L. Su, and S. Elliott, “Evidence of Formation of Tightly Bound Rare-Earth Clusters in Chalcogenide Glasses and Their Evolution with Glass Composition,” Phys. Rev. B, 79 [18] 1802021-4 (2009).
    • 32R. Jing, Y. Guang, Z. Huidan, Z. Xianghua, Y. Yunxia, and C. Guorong, “Properties of Dy3+-Doped Ge-As-Ga-Se Chalcogenide Glasses,” J. Am. Ceram. Soc., 89 [8] 2486-91 (2006).
    • 33P. Lucas, A. A. Wilhelm, M. Videa, C. Boussard-Pledel, and B. Bureau, “Chemical Stability of Chalcogenide Infrared Glass Fibers,” Corros. Sci., 50 [7] 2047-52 (2008).
    • 34M. Churbanov, “High-Purity Chalcogenide Glasses as Materials for Fiber Optics,” J. Non-Cryst. Solids, 184, 25-9 (1995).
    • 35W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory Preparation of Highly Pure As2Se3 Glass,” J. Non-Cryst. Solids, 181, 231-7 (1995).
    • 36C. T. Moynihan, P. B. Macedo, M. S. Maklad, R. K. Mohr, and R. E. Howard, “Intrinsic and Impurity Infrared-Absorption in As2Se3,” J. Non-Cryst. Solids, 17, 369-85 (1975).
    • 37O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive Index and Optical Dispersion of Rare Earth Oxides Using a Small-Prism Technique,” J. Opt. A, 3 [3] 174-7 (2001).
    • 38P. France, “Critical Reports on Applied Chemistry”; pp. 188-204, Fluoride Glasses, Vol. 27, Edited by A. E. Comyns. Society of the Chemical Industry, John Wiley & Sons, Chichester, 1989
    • 39M. A. Afifi, A. E. Bekheet, H. T. El-Shair, and I. T. Zedan, “Determination and Analysis of Optical Constants for Ga2Se3 Films Near Absorption Edge,” Phys. B, 325, 308-18 (2003). h
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Cite this article