LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture, stomatognathic diseases, inorganic chemicals, equipment and supplies, complex mixtures
arxiv: Physics::Atomic and Molecular Clusters, Physics::Instrumentation and Detectors
It is generally accepted that the exposed surfaces of silicon crystals are highly reactive due to the dangling bonds which protrude into the vacuum. However, surface reconstruction can not only modify the reactivity of bulk silicon crystals, but plays a key role in determining the properties of silicon nanocrystals. In this study we probe the reactivity of silicon clusters at the end of a scanning probe tip by examining their interaction with closed shell fullerene molecules. Counter to intuitive expectations, many silicon clusters do not react strongly with the fullerene cage, and we find that only specific highly oriented clusters have sufficient reactivity to break open the existing carbon-carbon bonds.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Leo Gross, Fabian Mohn, Nikolaj Moll, Peter Liljeroth, and Gerhard Meyer, Science 325, 1110 (2009).
    • [2] Adam Sweetman, Samuel P. Jarvis, Philipp Rahe, Neil R. Champness, Lev Kantorovich, and Philip Moriarty, Phys. Rev. B 90, 165425 (2014).
    • [3] Ce´sar Moreno, Oleksandr Stetsovych, Tomoko K. Shimizu, and Oscar Custance, Nano Lett. 15, 2257 (2015).
    • [4] Kota Iwata, Shiro Yamazaki, Pingo Mutombo, Prokop Hapala, Martin Ondra´cˇek, Pavel Jel´ınek, and Yoshiaki Sugimoto, Nature Communications 6, 7766 (2015).
    • [5] R. Pe´rez, M. C. Payne, I. Sˇtich, and K. Terakura, Phys. Rev. Lett. 78, 678 (1997).
    • [6] R. Perez, I. Stich, M. C. Payne, and K. Terakura, Phys. Rev. B 58, 10835 (1998).
    • [7] P. Pou, S. A. Ghasemi, P. Jelinek, T. Lenosky, S. Goedecker, and R. Perez, Nanotechnology 20, 264015 (2009).
    • [8] M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Guntherodt, and H. J. Gu¨ntherodt, Science 291, 2580 (2001).
    • [9] L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, D. Pena, A. Gourdon, and G. Meyer, Science 337, 1326 (2012).
    • [10] C. Chiutu, A. M. Sweetman, A. J. Lakin, A. Stannard, S. Jarvis, L. Kantorovich, J. L. Dunn, and P. Moriarty, Phys. Rev. Lett. 108, 268302 (2012).
    • [11] Nadine Hauptmann, Fabian Mohn, Leo Gross, Gerhard Meyer, Thomas Frederiksen, and Richard Berndt, New J. Phys. 14, 073032 (2012).
    • [12] Martin Ondra´cˇek, Pablo Pou, V´ıt Rozs´ıval, Cesar Gonza´lez, Pavel Jel´ınek, and Rube´n Pe´rez, Phys. Rev. Lett. 106, 176101 (2011).
    • [13] Makoto Ashino, Alexander Schwarz, Timo Behnke, and Roland Wiesendanger, Phys. Rev. Lett. 93, 136101 (2004).
    • [14] Philip J. Moriarty, Surf. Sci. Rep. 65, 175 (2010).
    • [15] Certain commercial equipment, instruments, or materials (or suppliers, or software, etc.) are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
    • [16] Adam Sweetman and Andrew Stannard, Beilstein Journal of Nanotechnology 5, 386 (2014).
    • [17] John E. Sader and Suzanne P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004).
    • [18] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, WIREs Comput. Mol. Sci. 4, 15 (2014).
    • [19] J. VandeVondele, M. Krackb, F. Mohamedb, M. Parrinellob, T. Chassaingc, and J. Hutterc, Comput. Phys. Commun. 167, 103 (2005).
    • [20] G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).
    • [21] M. Hutter J. Goedecker, and S. Teter, Phys. Rev. B 54, 1703 (1996).
    • [22] K. Ernzerhof, M. Perdew, and J. P. Burke, Phys. Rev. Lett. 77, 3865 (1996).
    • [23] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
    • [24] J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
    • [25] Raw data may be found at http://dx.doi.org/10.17639/nott.55.
    • [26] Mark P. Boneschanscher, Joost Van Der Lit, Zhixiang Sun, Ingmar Swart, Peter Liljeroth, and Danie¨l Vanmaekelbergh, ACS Nano 6, 10216 (2012).
    • [27] Masayuki Abe, Yoshiaki Sugimoto, O. Custance, S. Morita et al., Appl. Phys. Lett. 87, 173503 (2005).
    • [28] Leo Gross (private communication, 2015).
    • [29] L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, and M. Persson, Phys. Rev. Lett. 107, 086101 (2011).
    • [30] Andrew J. Lakin, Cristina Chiutu, Adam M. Sweetman, Philip Moriarty, and Janette L. Dunn, Phys. Rev. B 88, 035447 (2013).
    • [31] Ayhan Yurtsever, Yoshiaki Sugimoto, Hideki Tanaka, Masayuki Abe, Seizo Morita, Martin Ondra´cˇek, Pablo Pou, Rube´n Pe´rez, and Pavel Jel´ınek, Phys. Rev. B 87, 155403 (2013).
    • [32] Adam Sweetman, Philipp Rahe, and Philip Moriarty, Nano Lett. 14, 2265 (2014).
    • [33] Peter Sharp, Sam Jarvis, Richard Woolley, Adam Sweetman, Lev Kantorovich, Chris Pakes, and Philip Moriarty, Appl. Phys. Lett. 100, 233120 (2012).
    • [34] Adam Sweetman, Rashid Mohammad, Samuel Jarvis, Philipp Rahe, Janette Dunn, and Philip Moriarty (unpublished).
    • [35] Anna Campbellova´, Martin Ondra´cˇek, Pablo Pou, Rube´n Pe´rez, Petr Klapetek, and Pavel Jel´ınek, Nanotechnology 22, 295710 (2011).
    • [36] A. Sweetman, S. Jarvis, R. Danza, J. Bamidele, S. Gangopadhyay, G. A. Shaw, L. Kantorovich, and P. Moriarty, Phys. Rev. Lett. 106, 136101 (2011).
    • [37] Zsolt Majzik, Martin Setv´ın, Andreas Bettac, Albrecht Feltz, Vladim´ır Cha´b, and Pavel Jel´ınek, Beilstein Journal of Nanotechnology 3, 249 (2012).
    • [38] C. Weiss, C. Wagner, C. Kleimann, M. Rohlfing, F. S. Tautz, and R. Temirov, Phys. Rev. Lett. 105, 086103 (2010).
    • [39] R. Temirov, S. Soubatch, O. Neucheva, A. C. Lassise, and F. S. Tautz, New J. Phys. 10, 053012 (2008).
    • [40] Leo Gross, Fabian Mohn, Nikolaj Moll, Gerhard Meyer, Rainer Ebel, Wael M. Abdel-Mageed, and Marcel Jaspars, Nature Chemistry 2, 821 (2010).
    • [41] Re´my Pawlak, Shigeki Kawai, Sweetlana Fremy, Thilo Glatzel, and Ernst Meyer, ACS Nano 5, 6349 (2011).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | DECIMOL

Cite this article