LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: complex mixtures
In this contribution the formation of bioinorganic assemblies between the basic globular protein lysozyme and aqueous aluminium species including Al 13 -mer, Al 30 -mer and colloidal aluminium hydroxide have been explored and comparison made to previous interaction studies performed with bovine serum albumin (BSA). Specific charge-stabilised bioinorganic assemblies involving aluminium species and lysozyme were observed to form in contrast to the gel like structures formed on interaction of BSA with aluminium species. As demonstrated by infrared spectroscopy (structural assignment, 2D correlation spectroscopy), interactions mostly involve acidic surface groups of the proteins (Asp, Glu), with strong complexation and deprotonation in the case of BSA interacting with Al 13 and Al 30 and through hydrogen bonding for lysozyme interacting with the same species and aluminium hydroxide particles interacting with both biomolecules.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. S. M. Bradley and R. A. Kydd, Catal. Lett., 1991, 8, 185-192.
    • 2. E. Montarges, A. Moreau and L. J. Michot, Appl. Clay Sci., 1998, 13, 165-185.
    • 3. J. Gregory and J. Duan, Pure Appl. Chem., 2001, 73, 2017-2026.
    • 4. J. J. Fitzgerald and A. H. Rosenberg, in Antiperspirants and Deodorants, ed. K Laden, Marcel Dekker, New York, 1999, pp. 83-137.
    • 5. C. C. Perry and K. L. Shafran, J. Inorg. Biochem., 2001, 87, 115-124.
    • 6. K. L. Shafran and C. C. Perry, Dalton Trans., 2005, 2098-2105.
    • 7. J. P. Jolivet, From Solution to Solid State, Wiley and Sons, Chichester, 2000.
    • 8. W. H. Casey, Chem. Rev., 2006, 106, 1-16.
    • 9. G. Berthon, Coord. Chem. Rev., 1996, 149, 241-280.
    • 10. W. R. Harris, G. Berthon, J. P. Day, C. Exley, T. Peder Flaten, W. F. Forbes, T. Kiss, C. Orvig and P. F. Zatta, J. Toxicol. Environ. Health, 1996, 48, 543-568.
    • 11. K. Rezwan, L. P. Meier, M. Rezwan, J. Voros, M. Textor and L. J. Gauckler, Langmuir, 2004, 20, 10055-10061.
    • 12. G. Furrer, B. L. Phillips, K.-U. Ulrich, R. Po¬® thig and W. H. Casey, Science, 2002, 297, 2245-2247.
    • 13. D. R. Parker, T. B. Kinraide and L. W. Zelazny, Soil Sci. Soc. Am. J., 1989, 53, 789-796.
    • 14. J. J. Comin, J. Barloy, G. Bourrie and F. Trolard, Eur. J. Agron., 1999, 11, 115-122.
    • 15. O. Deschaume, K. L. Shafran and C. C. Perry, Langmuir, 2006, 22, 10078-10088.
    • 16. E. Bergfors, B. Trollfors and A. Inerot, J. Allergy Clin. Immunol., 2004, 113, S294.
    • 17. J. Berkowitz, M. A. Anderson and R. C. Graham, Water Res., 2005, 39, 3918-3928.
    • 18. K. L. Shafran, O. Deschaume and C. C. Perry, J. Mater. Chem., 2005, 15, 3415-3423.
    • 19. K. Shafran, O. Deschaume and C. C. Perry, Adv. Eng. Mater., 2004, 6, 836-839.
    • 20. P. M. Jardine and L. W. Zelazni, Soil Sci. Soc. Am. J., 1986, 895-900.
    • 21. C. M. Stoscheck, Methods Enzymol., 1990, 182, 50-68.
    • 22. T. J. Lenk, T. A. Horbett, B. D. Ratner and K. K. Chittur, Langmuir, 1991, 7, 1755-1764.
    • 23. A. Muga, H. H. Mantsch and W. K. Surewicz, Biochemistry, 1991, 30, 7219-7224.
    • 24. J. E. Berry and Y. Ozaki, 2D-CoS Toolbox, Matlab Code, Kwansei-Gakuin University, Uegahra, Japan, 2001.
    • 25. I. Noda, A. E. Dowrey, C. Marcott, G. M. Story and Y. Ozaki, Appl. Spectrosc., 2000, 54, 236A-248A.
    • 26. W. G. Burton, K. D. Nugent, T. K. Slattery, B. R. Summers and L. R. Snyder, J. Chromatogr., 1988, 443, 363-379.
    • 27. A. A. Vertegel, R. W. Siegel and J. S. Dordick, Langmuir, 2004, 20, 6800-6807.
    • 28. K. Rezwan, L. P. Meier and L. J. Gauckler, Biomaterials, 2005, 26, 4351-4357.
    • 29. J. W. Akitt, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 377-379.
    • 30. L. Allouche, C. Gerardin, T. Loiseau, G. Ferey and F. Taulelle, Angew. Chem., Int. Ed., 2000, 39, 511-514.
    • 31. P. Rubini, A. Lakatos, D. Champmartin and T. Kiss, Coord. Chem. Rev., 2002, 137-152.
    • 32. G. Shackelford and K. Karplus, Proteins: Struct., Funct., Bioinform., 2007, 69, 159-164.
    • 33. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.
    • 34. A. Barth, Prog. Biophys. Mol. Biol., 2000, 74, 141-173.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2hu1Protein Data Bank

Share - Bookmark

Cite this article