Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

arxiv: Physics::Space Physics
Our purpose is to characterize the evolution of the magnetopause Kelvin-Helmholtz\ud (KH) wave activity with changes in thickness of the adjacent boundary layer,\ud geomagnetic latitude and interplanetary magnetic field (IMF) orientation. As the IMF\ud turns northward, wave activity may be generated at the dayside before propagating\ud down the tail, where the boundary layer is expected to support longer wavelengths. We\ud use two-point observations on the dusk magnetopause at low latitudes, from Geotail on\ud the dayside and Cluster tailward of the dusk terminator. We quantify the wavelength,\ud power, wavefront steepness and propagation direction at Cluster. An estimate of the\ud thickness of the low-latitude boundary layer (LLBL) is obtained by correlating normal\ud distances to the magnetopause, derived from two empirical solar-wind-driven models,\ud with a systematic relationship (the "transition parameter") found between the electron\ud number density and temperature; the correlation factor is used to infer the temporal\ud evolution of the thickness of the locally sampled layer. We find that wavelengths are\ud controlled by the IMF clock angle, as expected when generated by the KH mechanism\ud at the dayside, although amplitudes, wavefront steepness and propagation directions are\ud more closely correlated with the layer thickness. A survey of parameter space provides\ud evidence of the contribution of the KH mechanism to the widening of the electron LLBL.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antonova, E. E. (2005), The structure of the magnetospheric boundary layers and the magnetospheric turbulence, Planet. Space Sci., 53, 161 - 168, doi:10.1016/j.pss.2004.09.041.
    • Bai, T., and E. W. Cliver (1990), A 154 day periodicity in the occurrence rate of proton flares, Astrophys. J., 363, 299 - 309, doi:10.1086/169342.
    • Balogh, A., et al. (2001), The Cluster magnetic field investigation: Overview of in-flight performance and initial results, Ann. Geophys., 19, 1207 - 1217.
    • Belmont, G., and G. Chanteur (1989), Advances in magnetopause KelvinHelmholtz instability studies, Phys. Scr., 40, 124 - 128.
    • Bogdanova, Y. V., et al. (2005), On the formation of the high-altitude stagnant cusp: Cluster observations, Geophys. Res. Lett., 32, L12101, doi:10.1029/2005GL022813.
    • Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, Clarendon, Oxford.
    • Crooker, N. U., J. G. Luhmann, C. T. Russell, E. J. Smith, J. R. Spreiter, and S. S. Stahara (1985), Magnetic field draping against the dayside magnetopause, J. Geophys. Res., 90, 3505 - 3510.
    • de Keyser, J. (2005), The Earth's magnetopause: Reconstruction of motion and structure, Space Sci. Rev., 121, 225 - 235, doi:10.1007/ s11214-006-6731-3.
    • Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 - 48, doi:10.1103/PhysRevLett.6.47.
    • Eastman, T. E., E. W. Hones, S. J. Bame, and J. R. Asbridge (1976), The magnetospheric boundary layer: Site of plasma, momentum and energy transfer from the magnetosheath into the magnetosphere, Geophys. Res. Lett., 3, 685 - 688.
    • Elphic, R. C., and C. T. Russell (1979), ISEE-1 and 2 magnetometer observations of the magnetopause, in Proc. Magnetospheric Boundary Layers Conf., edited by J. Lemaire and B. Battrick, pp. 43 - 50, ESA, Alpbach, SP-148.
    • Fairfield, D. H. (1967), The ordered magnetic field of the magnetosheath, J. Geophys. Res., 72, 5865 - 5877.
    • Fairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto (2000), Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, 21,159 - 21,173.
    • Farrugia, C. J., F. T. Gratton, L. Bender, H. K. Biernat, N. V. Erkaev, J. M. Quinn, R. B. Torbert, and V. Dennisenko (1998), Charts of joint KelvinHelmholtz and Rayleigh-Taylor instabilities at the dayside magnetopause for strongly northward interplanetary magnetic field, J. Geophys. Res., 103, 6703 - 6727.
    • Farrugia, C. J., et al. (2000), Coordinated wind, interball/tail, and ground observations of Kelvin-Helmholtz waves at the near-tail, equatorial magnetopause at dusk: January 11, 1997, J. Geophys. Res., 105, 7639 - 7667.
    • Farrugia, C. J., F. T. Gratton, and R. B. Torbert (2001), Viscous-type processes in the solar wind-magnetosphere interaction, Space Sci. Rev., 95, 443 - 456.
    • Foullon, C., E. Verwichte, and V. M. Nakariakov (2004), Detection of ultralong-period oscillations in an EUV filament, Astron. Astrophys., 427, L5 - L8, doi:10.1051/0004-6361:200400083.
    • Foullon, C., E. Verwichte, V. M. Nakariakov, and L. Fletcher (2005), X-ray quasi-periodic pulsations in solar flares as magnetohydrodynamic oscillations, Astron. Astrophys., 440, L59 - L62, doi:10.1051/0004-6361:200500169.
    • Frank, L. A., K. L. Ackerson, W. R. Paterson, J. A. Lee, M. R. English, and G. L. Pickett (1994), The comprehensive plasma instrumentation (CPI) for the Geotail spacecraft, J. Geomagn. Geoelectr., 46, 23.
    • Fujimoto, M., and T. Terasawa (1994), Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex, J. Geophys. Res., 99, 8601 - 8613.
    • Fuller, W. A. (1995), Introduction to Statistical Time Series, John Wiley, Hoboken, N. J.
    • Gnavi, G., F. T. Gratton, C. J. Farrugia, and L. Bilbao (2006), The KH stability of the supersonic magnetopause flanks modeled by continuous profiles for the transition, in Plasma and Fusion Science: 16th IAEA Technical Meeting on Research using Small Fusion Devices, American Institute of Physics Conference Series, vol. 875, edited by J. Julio and E. Herrera Velazquez, pp. 296 - 299, AIP, Mexico City, Mexico, doi:10.1063/1.2405952.
    • Gustafsson, G., et al. (2001), First results of electric field and density observations by Cluster EFW based on initial months of operation, Ann. Geophys., 19, 1219 - 1240.
    • Hapgood, M. A., and D. A. Bryant (1990), Re-ordered electron data in the low-latitude boundary layer, Geophys. Res. Lett., 17, 2043 - 2046.
    • Hapgood, M. A., and D. A. Bryant (1992), Exploring the magnetospheric boundary layer, Planet. Space Sci., 40, 1431 - 1459, doi:10.1016/0032- 0633(92)90099-A.
    • Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Re`me, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro (2004), Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, 755 - 758, doi:10.1038/nature02799.
    • Horne, J. H., and S. L. Baliunas (1986), A prescription for period analysis of unevenly sampled time series, Astrophys. J., 302, 757 - 763, doi:10.1086/164037.
    • Hughes, W. J. (1981), Magnetospheric ULF waves: A tutorial with a historical perspective, in Solar Wind Sources of Magnetospheric UltraLow-Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, AGU, Washington, DC.
    • Johnstone, A. D., et al. (1997), Peace: A plasma electron and current experiment, Space Sci. Rev., 79, 351 - 398.
    • King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.
    • Kivelson, M. G., and S.-H. Chen (1995), The magnetopause: Surface waves and instabilities and their possible dynamical consequences, in Physics of the Magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song, B. U. O¨. Sonnerup, and M. F. Thomsen, AGU, Washington, D. C.
    • Kokubun, S., T. Yamamoto, M. H. Acuna, K. Hayashi, K. Shiokawa, and H. Kawano (1994), The Geotail magnetic field investigation, J. Geomagn. Geoelectr., 46, 7.
    • Lepping, R. P., and L. F. Burlaga (1979), Geomagnetopause surface fluctuations observed by Voyager 1, J. Geophys. Res., 84, 7099 - 7106.
    • Lockwood, M., and M. A. Hapgood (1997), How the magnetopause transition parameter works, Geophys. Res. Lett., 24, 373 - 376.
    • Manuel, J. R., and J. C. Samson (1993), The spatial development of the low-latitude boundary layer, J. Geophys. Res., 98, 17,367 - 17,386.
    • McComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee (1998), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 86, 563 - 612.
    • Mitchell, D. G., F. Kutchko, D. J. Williams, T. E. Eastman, and L. A. Frank (1987), An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere, J. Geophys. Res., 92, 7394 - 7404.
    • Miura, A. (1984), Anomalous transport by magnetohydrodynamic KelvinHelmholtz instabilities in the solar wind-magnetosphere interaction, J. Geophys. Res., 89, 801 - 818.
    • Miura, A. (1995), Dependence of the magnetopause Kelvin-Helmholtz instability on the orientation of the magnetosheath magnetic field, Geophys. Res. Lett., 22, 2993 - 2996.
    • Miura, A. (1999a), A quantitative test of the self-organization hypothesis of the magnetopause Kelvin-Helmholtz instability as an inverse problem, Geophys. Res. Lett., 26, 409 - 412.
    • Miura, A. (1999b), Self-organization in the two-dimensional magnetohydrodynamic transverse Kelvin-Helmholtz instability, J. Geophys. Res., 104, 395 - 411.
    • Miura, A., and P. L. Pritchett (1982), Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 87, 7431 - 7444.
    • Øieroset, M., T. D. Phan, M. Fujimoto, L. Chan, R. P. Lin, and R. Skoug (2002), Spatial and temporal variations of the cold dense plasma sheet: Evidence for a low-latitude boundary layer source?, in Earth's LowLatitude Boundary Layer, Geophys. Monogr. Ser., vol. 133, edited by P. T. Newell and T. Onsager, AGU, Washington, D. C.
    • Otto, A., and D. H. Fairfield (2000), Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations, J. Geophys. Res., 105, 21,175 - 21,190.
    • Owen, C. J., M. G. G. T. Taylor, I. C. Krauklis, A. N. Fazakerley, M. W. Dunlop, and J. M. Bosqued (2004), Cluster observations of surface waves on the dawn flank magnetopause, Ann. Geophys., 22, 971 - 983.
    • Phan, T. D., et al. (1997), Low-latitude dusk flank magnetosheath, magnetopause, and boundary layer for low magnetic shear: Wind observations, J. Geophys. Res., 102, 19,883 - 19,895.
    • Re`me, H., et al. (2001), First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303 - 1354.
    • Roelof, E. C., and D. G. Sibeck (1993), Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure, J. Geophys. Res., 98, 21,421 - 21,450.
    • Russell, C. T., M. M. Mellott, E. J. Smith, and J. H. King (1983), Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals, J. Geophys. Res., 88, 4739 - 4748.
    • Scargle, J. D. (1982), Studies in astronomical time series analysis. II: Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835 - 853, doi:10.1086/160554.
    • Schwartz, S. J. (1998), Shock and Discontinuity Normals, Mach Numbers, and Related Parameters, in Analysis Methods for Multi-Spacecraft Data, edited by G. Pashmann and P. W. Daly, chap. 10, pp. 249 - 270, ISSI Scientific Report SR-001, Bern.
    • Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 - 9512.
    • Smith, C. W., J. L'Heureux, N. F. Ness, M. H. Acun˜a, L. F. Burlaga, and J. Scheifele (1998), The ACE Magnetic Fields Experiment, Space Sci. Rev., 86, 613 - 632.
    • Song, P., and C. T. Russell (2002), Flow in the magnetosheath: The legacy of John Spreiter, Planet. Space Sci., 50, 447 - 460.
    • Song, P., C. T. Russell, and M. F. Thomsen (1992), Slow mode transition in the frontside magnetosheath, J. Geophys. Res., 97, 8295 - 8305.
    • Song, P., C. T. Russell, T. I. Gombosi, and D. L. DeZeeuw (2002), A model of the formation of the low-latitude boundary layer for northward IMF by reconnection: A summary and review, in Earth's Low-Latitude Boundary Layer, Geophys. Monogr. Ser., vol. 133, edited by P. T. Newell and T. Onsager, AGU, Washington, D. C.
    • Starck, J.-L., and F. Murtagh (2002), Astronomical Image and Data Analysis, Astron. and Astrophys. Library, Springer, Berlin.
    • Talwar, S. P. (1964), Hydromagnetic stability of the magnetospheric boundary, J. Geophys. Res., 69, 2707 - 2713.
    • Terasawa, T., et al. (1997), Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration, Geophys. Res. Lett., 24, 935 - 938, doi:10.1029/96GL04018.
    • Thomas, V. A., and D. Winske (1993), Kinetic simulations of the KelvinHelmholtz instability at the magnetopause, J. Geophys. Res., 98, 11,425 - 11,438.
    • Torrence, C., and G. P. Compo (1998), A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79(1), 61 - 78, 79, 61 - 78.
    • Treumann, R. A., J. Labelle, and T. M. Bauer (1995), Diffusion processes: An observational perspective, in Physics of the Magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song, B. U. O¨ . Sonnerup, and M. F. Thomsen, AGU, Washington, D. C.
    • Tsyganenko, N. A., and D. H. Fairfield (2004), Global shape of the magnetotail current sheet as derived from Geotail and Polar data, J. Geophys. Res., 109, A03218, doi:10.1029/2003JA010062.
    • Walker, A. D. M. (1981), The Kelvin-Helmholtz instability in the lowlatitude boundary layer, Planet. Space Sci., 29, 1119 - 1133, doi:10.1016/ 0032-0633(81)90011-8.
    • Wu, C. C. (1986), Kelvin-Helmholtz instability at the magnetopause boundary, J. Geophys. Res., 91, 3042 - 3060.
    • C. J. Farrugia and R. B. Torbert, Space Science Center and Department of Physics, University of New Hampshire, 9 College Rd., Durham, NH 03824, USA.
    • A. N. Fazakerley, C. Foullon, and C. J. Owen, Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK. () F. T. Gratton, Instituto de F´ısica del Plasma, CONICET, Universidad de Buenos Aires, Pab. 1, 1428, Buenos Aires, Argentina.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article