LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: 2304, 2310
Mango is the second most consumed tropical fruit after banana and the by-products of mango processing (peel, kernel and seed) roughly comprise 35-60% of the total fruit weight, thus representing a potentially high volume resource of exploitable biobased chemicals and materials. Herein, conversion and characterisation of waste mango peels from three different cultivars (Alphonso, Honey and Tommy Atkins) into pectin and porous cellulose using low temperature microwave-assisted acid-free hydrolytic conditions is reported. Microwave-assisted acid-free extraction yielded up to 11.63% (dry weight basis) of pectin which was characterised by IR, NMR (both solution and solid phase) and TGA which showed close similarity to commercial (acid extracted) pectin. The degree of esterification of pectin was determined by 13C NMR (75.6-86.2%) and titrimetry (79.3-87.7%) and the pectin showed excellent gelling ability. The molecular weight as determined by GPC was in the range 14130 (Honey)-25540 (Tommy Atkins). Porosity measurements on the depectinated residue, i.e., residual cellulosic matter showed mesoporous characteristics: average pore diameter, 9.3 nm (Alphonso)-10.5 nm (Honey), however with poor surface area 16.3 m2 g-1 (Honey)-26.0 m2 g-1. Interestingly, a second microwave hydrothermal treatment on these residues retained mesoporosity whilst significantly increasing surface area (88.8 m2 g-1 (Honey)-124.0 m2 g-1 (Alphonso)) and pore volume by approximately six-fold. This is the first detailed combined study of microwave-assisted extraction to yield pectin and mesoporous cellulose towards a potential zero waste mango biorefinery.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 Lipinski, B. et al. 2013. “Reducing Food Loss and Waste.” Working Paper, Installment 2 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute. Available online at http://www.worldresourcesreport.org
    • 3 FAO. 2011. Global food losses and food waste – Extent, causes and prevention. Rome. Available at http://www.fao.org/docrep/014/mb060e/mb060e00.pdf
    • 4 C. O. Tuck, E. Pérez, I. T. Horváth, R. a. Sheldon, M. Poliakoff, Science, 2012, 337, 695-9
    • 5 A. Baiano, Molecules, 2014, 19, 14821–2
    • 6 L. Pfaltzgraff, M. De bruyn, E. C. Cooper, V. Budarin, J. H. Clark, Green Chem, 2013, 15, 307–324
    • 7 C. Lin, L. Pfaltzgraff, L. Herrero-Davila, E. Mubofu, S. Abderrahim, J. Clark, A. Koutinas, N. Kopsahelis, K. Stamatelatou, F. Dickson, S. Thankappan, Z. Mohamed, R. Brocklesby and R. Luque, Energy Environ Sci, 2013, 6, 426- 464
    • 8 C. Lin, A. Koutinas, K. Stamatelatou, E. Mubofu, A. Matharu, N. Kopsahelis, L. Pfaltzgraff, J. Clark, S. Papanikolaou, T. Kwan and R. Luque , Biofuels, Bioprod. Biorefin., 2014, 8(5), 686– 715
    • 9 C. Rolin, G.B. Seymour, J. P. Knox, Commercial pectin preparations in Pectins and their manipulation, Blackwell Publishing CRC Press, Oxford, 2002
    • 10 M. Kratchanova, C. Benemou, C. Kratchanov, Carbohydr. Polym. 1991, 15, 271–282
    • 11 B. B. Koubala, G. Kansci, L. I. Mbome, M. J. Crépeau, J. F. Thibault, M. C. Ralet, Food Hydrocoll., 2008, 22, 1345–1351
    • 12 R. Ciriminna, N. Chavarría-Hernández, A. I. Rodrigez Hernández, M. Pagliaro, Biofuels, Bioprod. Bioref., 2015, 9, 368–377
    • 13 FAO Database, http://faostat3.fao.org, (accessed 15/04/2016)
    • 14 N. Berardini, M. Knodler, A. Schieber, R. Carle, Innovative Food Sci. Emerging Technol., 2005, 6, 442 – 452
    • 15 P. Maisuthusakul, M. H. Gordon, Food Chem., 2009, 117(2), 332-341
    • 16 S. Sirisakulwat, P. Sruamsiri, R. Carle, S. Neidhart, Int. J. Food Sci. Technol., 2010, 45(8), 1647-1658
    • 17 J. Baddi, D. Vijayalakshmi, N. A. Durgannavar, R. Chandru, Asian Journal of Dairy and Food Research, 2015, 34 (1), 75-77
    • 18 J. A. Solis-Fuentes, M. C. Duran-de-Bazua, Bioresour. Technol., 2004, 92(1), 71-8
    • 19 L. Cock, E. García-Gonzalez, C. León, 2015, Food Rev. Int., DOI: 10.1080/87559129.2015.1094815.
    • 20 N. Berardini, M. Knödler, A. Schieber, R. Carle, Innov. Food Sci. Emerg. Technol. 2005, 6, 442–452
    • 21 N. Berardini, R. Fezer, J. Conrad, U. Beifuss, R. Carl, A. Schieber, J. Agric. Food Chem., 2005, 53, 1563–1570
    • 22 S. Pandit, P. Vijayanand, S. G. Kulkarni, Food Sci. Technol., 2015, 64, 1010-1014
    • 23 J. P. Maran, K. Swathi, P. Jeevitha, J. Jayalakshmi, G. Ashvini, Carbohydr. Polym., 2015, 123, 67–71
    • 24 R. Rojas, J. C. Contreras-Esquivel, M. T. Orozco-Esquivel, C. Munoz, J. A. Aguirre-Joya, C. N. Aguilar. Mango Peel as Source of Antioxidants and Pectin: Microwave Assisted Extraction. Waste Biomass Valor., 2015, 6, 1095–1102
    • 25 O. Parniakov, F. J. Barba, N. Grimi, N. Lebovka, E. Vorobiev, Food Chem., 2016, 192, 842–848
    • 26 S. Kauser, A. Saeed, M. Iqbal, Pak. J. Bot., 2015, 47(4): 1527- 1533
    • 27 Food Chemical Codex, National Academy Press, Washington, 2003
    • 28 C. Löfgren, S. Guillotin, H. Evenbratt, H. Schols, A. Hermansson, Biomacromolecules, 2005, 6, 646–652
    • 29 B. B. Koubala, G. Kansci, L. I. Mbome, M. J. Crépeau, J. F. Thibault, M. C. Ralet, Food. Hydrocolloid., 2008, 22, 1345- 1351
    • 30 J. Prakash Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Carbohyd. Polym., 2013, 97, 703-709
    • 31 M. J. Gronnow, V. L. Budarin, O. Mašek, K. N. Crombie, P. A. Brownsort, P. S. Shuttleworth, P. R. Hurst and J. H. Clark, GCB Bioenergy, 2013, 5, 144-152
    • 32 A. Synytsya, J. Bopikova, J. Brus, J. Czech, food Sci. 2003, 21, 1–12
    • 33 M. Iacomini, R. V. Serato, G. L. Sassaki, L. Lopes, D. F. Buchi, P. A. J. Gorin, Fitoterapia, 2005, 76, 676-683
    • 34 Z. Kostalova, A. Hromadkova, M. Ebringerova, M. Polovka, T. E. Michaelsen, Ind. Crop. Prod. 2013, 41, 127-133
    • 35 J. Guo, F. Fang, Z. Xu, C. C. Smith, R. L. Prog. Energy Combust. Sci. 2012, 38, 672–690
    • 36 V. Chaturvedi, P. Verma, Biotech. 2013, 3, 415–431
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article