LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Soft Condensed Matter
Field-theoretic simulation (FTS) offers an efficient means of predicting the equilibrium behavior of high-molecular-weight structured polymers, provided one is able to deal with the strong ultraviolet (UV) divergence that occurs at realistic molecular weights. Here melts of lamellar-forming diblock copolymer are studied using a Monte Carlo version (MC-FTS), where the composition field fluctuates while the pressure field follows the mean-field approximation. We are able to control the UV divergence by introducing a new effective Flory-Huggins interaction parameter, $\chi_e$, thereby permitting MC-FTS for molecular weights extending down to values characteristic of experiment. Results for the disordered-state structure function, the layer spacing and compressibility of the ordered lamellar phase, and the position of the order-disorder transition (ODT) show excellent agreement with recent particle-based simulation. Given the immense versatility of FTS, this opens up the opportunity for quantitative studies on a wide range of more complicated block copolymer systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Department of Chemical Engineering, Department of Physics & Astronomy,
    • and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada‡
    • 2School of Mathematical and Physical Sciences, University of Reading, Whiteknights, Reading RG6 6AX, U.K.
    • University of Lincoln, Brayford Pool, Lincoln LN6 7TS,
    • U.K. 1 Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Hug-
    • gins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276,
    • 384-389.Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.;
    • 2012, 336, 434-440. 2 Bates, F. S.; Fredrickson, G. Phys. Today 1999, 52,
    • 32-38.Hadjichristidis, N.; Pispas, S.; Floudas, G. Block
    • and Applications; John Wiley & Sons, Inc., 2003.Segal-
    • man, R. A. Mat. Sci. Eng. R 2005, 48, 191 - 226. 3 Leibler, L. Macromolecules 1980, 13, 1602-1617. 4 Matsen, M. W. J. Phys.-Condens. Mat. 2002, 14, R21. 5 Fredrickson, G. H. The equilibrium theory of inhomoge-
    • 2006. 6 Edwards, S. F. Proc. Phys. Soc. 1965, 85, 613. 7 Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87,
    • 697-705. 8 Brazovskii, S. A. Soviet Physics - JETP 1975, 41, 85-89. 9 Mayes, A. M.; de la Cruz, M. O. J. Chem. Phys. 1991, 95,
    • 4670-4677. 10 Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.;
    • cuss. 1994, 98, 7-18. 11 Morse, D. C.; Chung, J. K. J. Chem. Phys. 2009, 130,
    • 224901. 12 Qin, J.; Grzywacz, P.; Morse, D. C. J. Chem. Phys. 2011,
    • 135, 084902. 13 Morse, D. C.; Qin, J. J. Chem. Phys. 2011, 134, 084902. 14 Yamakawa, H. Modern theory of polymer solutions;
    • Harper's chemistry series; Harper & Row, 1971.Müller, M.;
    • Binder, K.; Schäfer, L. Macromolecules 2000, 33, 4568-
    • 4580.Wang, Z.-G. J. Chem. Phys. 2002, 117, 481-
    • 500.Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.;
    • Phys. Rev. Lett. 2004, 93, 147801.Beckrich, P.; Johner, A.;
    • Macromolecules 2007, 40, 3805-3814. 15 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liq-
    • uids; Clarendon Press: New York, NY, USA, 1989. 16 Frenkel, D.; Smit, B. Understanding Molecular Simulation:
    • From Algorithms to Applications, 2nd ed.; Academic Press,
    • 2002. 17 Glaser, J.; Qin, J.; Medapuram, P.; Morse, D. C. Macro-
    • molecules 2014, 47, 851-869. 18 Glaser, J.; Medapuram, P.; Beardsley, T. M.; Mat-
    • sen, M. W.; Morse, D. C. Phys. Rev. Lett. 2014, 113,
    • 068302. 19 Ganesan, V.; Fredrickson, G. H. Europhys. Lett. 2001, 55,
    • 814. 20 Parisi, G. Physics Letters B 1983, 131, 393 - 395. 21 Düchs, D.; Ganesan, V.; Fredrickson, G. H.; Schmid, F.
    • Macromolecules 2003, 36, 9237-9248. 22 Lennon, E. M.; Katsov, K.; Fredrickson, G. H. Phys. Rev.
    • Lett. 2008, 101, 138302. 23 Düchs, D.; Schmid, F. J. Chem. Phys. 2004, 121, 2798-
    • 2805. 24 Alexander-Katz, A.; Fredrickson, G. H. Macromolecules
    • 2007, 40, 4075-4087. 25 Stasiak, P.; Matsen, M. W. Macromolecules 2013, 46,
    • 8037-8045. 26 Olvera de la Cruz, M.; Edwards, S. F.; Sanchez, I. C. J.
    • Chem. Phys. 1988, 89, 1704-1708. 27 Medapuram, P.; Glaser, J.; Morse, D. C. Macromolecules
    • 2015, 48, 819-839. 28 Müller, M.; Schmid, F. In Advanced Computer Simula-
    • Berlin Heidelberg, 2005; Vol. 185; pp 1-58. 29 Delaney, K. T.; Fredrickson, G. H. Computer Physics Com-
    • munications 2013, 184, 2102 - 2110. 30 Müller, M.; Binder, K. Macromolecules 1995, 28, 1825-
    • 1834. 31 de Gennes, P. Scaling Concepts in Polymer Physics; Cor-
    • nell University Press, 1979. 32 Flory, P. J. Principles of polymer chemistry.; Cornell Uni-
    • versity Press: Ithaca, 1953. 33 Zong, J.; Wang, Q. J. Chem. Phys. 2013, 139, 124907. 34 In ref 25, there was a small mistake in the ROL curve for
    • N¯ = 106; the corrected curve now agrees much better with
    • the MC-FTS. 35 Barrat, J.-L.; Fredrickson, G. H. J. Chem. Phys. 1991, 95,
    • 1281-1289. 36 Olvera de la Cruz, M. Phys. Rev. Lett. 1991, 67, 85-88. 37 Luckhurst, G. R.; Stephens, R. A.; Phippen, R. W. Liq.
    • Cryst. 1990, 8, 451-464. 38 Wang, Q.; Yan, Q.; Nealey, P. F.; de Pablo, J. J. J. Chem.
    • Phys. 2000, 112, 450-464. 39 Martínez-Veracoechea, F. J.; Escobedo, F. A. Macro-
    • molecules 2005, 38, 8522-8531. 40 Škvor, J.; Posel, Z. Macromol. Theor. Simul. 2015, 24,
    • 141-151. 41 Arora, A.; Morse, D. C.; Bates, F. S.; Dorfman, K. D. Soft
    • Matter 2015, 11, 4862-4867. 42 Fredrickson, G. H.; Binder, K. J. Chem. Phys. 1989, 91,
    • 7265-7275. 43 Amundson, K.; Helfand, E. Macromolecules 1993, 26,
    • 1324-1332. 44 Lennon, E. M.; Mohler, E. M.; Ceniceros, H. D.; Garcia-
    • 2008, 6, 1347-1370. 45 Grzywacz, P.; Qin, J.; Morse, D. C. Phys. Rev. E 2007,
    • 76, 061802. 46 Koski, J.; Chao, H.; Riggleman, R. A. J. Chem. Phys.
    • 2013, 139, 244911. 47 Glaser, J.; Qin, J.; Medapuram, P.; Müller, M.;
    • Morse, D. C. Soft Matter 2012, 8, 11310-11317. 48 Gillard, T. M.; Medapuram, P.; Morse, D. C.; Bates, F. S.
    • Macromolecules 2015, 48, 2801-2811.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article